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Voorwoord

Het elektriciteitssysteem is onderhevig aan tal van onzekerheden en toevallighe-
den: menselijke fouten, onverwachte en wisselende weersomstandigheden, etc.
Het is belangrijk hoe je met deze zaken omgaat, aangezien afschakelingen grote
gevolgen kunnen hebben in de moderne maatschappij. Ook het verloop van
een doctoraat en het leven daarbuiten worden beïnvloed door toevalligheden:
mensen die je ontmoet, kansen die je worden geboden, ingevingen die je krijgt
en tegenslagen. Ik ben blij dat ik op mijn doctoraatstraject veel mensen ben
tegengekomen die mij mooie kansen hebben geboden, waarmee het aangenaam
samenwerken was, die voor het nodige plezier hebben gezorgd en die mij hebben
gesteund in voor- en tegenspoed. In dit voorwoord wil ik hen dan ook graag
bedanken.

Tijdens het werken aan mijn masterthesis had de onderzoeksmicrobe me te
pakken en keek ik er naar uit om een doctoraat te starten. Eerst en vooral wil ik
Prof. Dirk Van Hertem en Prof. Geert Deconinck bedanken om mij de kans te
geven om dit te doen onder hun begeleiding. Het GARPUR project werd tijdens
onze eerste gesprekken voorgesteld als een ambitieus en interessant Europees
project rond betrouwbaarheidsbeheer van transmissiesystemen. Gegeven
het belang van betrouwbare en betaalbare elektriciteitsvoorziening en de
vooruitstrevendheid die men in het project voor ogen had, was ik meteen
bereid om hier aan mee te werken. Ook het Fonds voor Wetenschappelijke
Onderzoek (FWO) zag de relevantie van het onderwerp in en besloot om mij
na een jaar onderzoek een FWO Aspiranten mandaat toe te kennen. Dit gaf
me de ruimte om een eigen invulling te geven aan het onderzoekstopic. Dankzij
een FWO reisbeurs kon ik me ook verder verdiepen in het onderwerp tijdens
een verblijf van 3 maanden aan Durham University. Ik wil het FWO dan ook
bedanken voor de financiële steun.

Dirk, als promotor van dit werk heeft u mee richting gegeven aan mijn onderzoek,
maar me toch de nodige vrijheid gelaten. Bedankt voor de begeleiding en de
mogelijkheden die u me heeft gegeven. De meetings en conferenties waaraan
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ik kon deelnemen hebben me veel inzicht gegeven en in contact gebracht met
mensen met een interessante kijk op de uitdagingen in betrouwbaarheidsbeheer
van elektriciteitssystemen en de elektriciteitssector in het algemeen.

Geert, als co-promotor van dit werk nam u regelmatig de tijd om mijn onderzoek
te bespreken. Deze meetings lieten me toe om alles op een rijtje te zetten en uw
klare kijk gaf me vertrouwen in de weg die ik aan het bewandelen was. Bedankt
voor de interessante discussies en de nuttige tips.

I would also like to thank the members of the examination committee. Prof.
Hens, bedankt om als voorzitter op te treden van mijn jury. Prof. Berbers
and Prof. Vazquez Sabariego, I am grateful for your useful feedback during
the intermediate reporting and the review of my text. Prof. Proost and Prof.
Troffaes, bedankt voor de nuttige feedback op mijn tekst. Ik heb genoten van de
aangename samenwerkingen die me toelieten mijn onderzoek te bekijken vanuit
een respectievelijk meer sociaal-economisch en wiskundig perspectief. Prof.
Wehenkel, I would like to thank you for the review of my thesis, the feedback
during the intermediate reporting and the useful input during the GARPUR
meetings.

Het GARPUR project heeft er mede voor gezorgd dat ik kon samenwerken met
zeer bekwame onderzoekers. Eerst en vooral wil ik Marten van harte bedanken
voor de aangename samenwerking. Jouw klare kijk op de energieproblematiek,
zowel vanuit sociaal-economisch standpunt als vanuit je ingenieursachtergrond,
gecombineerd met je enthousiasme en engagement zorgden voor een multi-
disciplinaire samenwerking die heeft geleid tot technisch en sociaal relevante
conclusies. Daarnaast wil ik Wouter, Frederik, Hakan en Tom bedanken voor
de samenwerking bij de implementatie van het quantificatie framework.

De vier voorbije jaren heb ik verschillende hoeken van het ESAT gebouw, het
land en de wereld gezien. Elk van deze werkomgevingen had zijn eigenheid,
maar ik heb van allen even hard genoten. Werken in de ELECTA groep was
dan ook meer dan werken alleen. De sportdag, kerstfeestjes, samenkomsten
in De Lodge, een uitstap naar Krakau of een spelletje tafelvoetbal, ping pong
of voetbal, er waren mogelijkheden genoeg om een optimaal evenwicht tussen
inspanning en ontspanning te bewaren. Het was een plezier deel uit te maken
van deze hechte groep. I would like to thank all the colleagues for the pleasant
working atmosphere and the nice collaborations during the teaching duties. Ook
de dames van het secretariaat en de IT wil ik bedanken voor het regelen van
allerlei praktische en IT gerelateerde zaken.

In juni 2016 kregen we ook een nieuwe werkplaats in EnergyVille te Genk.
Speciale dank gaat uit naar Philippe voor de bereidwilligheid om mij op te pikken
en de aangename ritten van en naar Genk. Ook bedankt aan de carpoolcollega’s
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die bereid waren om een tussenstop te maken zodat ik kon meerijden naar Genk.

Autumn 2016, I resided three months in the UK for a research visit at Durham
University. Prof. Troffaes and Prof. Kazemtabrizi, I would like to thank you to
be my hosts. I am grateful for the interesting discussions about my work and
the useful feedback. It was a nice experience during which I have learnt a lot. It
enabled me to look at my research from a different perspective, which has given
me a lot of new insights.

Natuurlijk was er ook een leven naast mijn doctoraat. Bedankt aan mijn
voetbalcollega’s, trainers en afgevaardigden bij Rapide Wezemaal, KV Mechelen,
Familia Academia en the Durham WAFC om een uitlaatklep te bieden voor het
onderzoekswerk. Mijn leraressen en klasgenoten in de Academie in Heist op den
Berg wil ik bedanken voor de aangename lessen woord en om te helpen bouwen
aan de ‘yellow brick road’ van mijn presentaties. Ook iedereen waarmee ik veel
plezier heb gemaakt, lief en leed heb gedeeld en die me de nodige steun heeft
geboden wil ik van harte bedanken.

Tot slot wil ik mijn ouders en de Moe en de Va hartelijk danken. Van kleinsaf
hebben ze mij alle kansen gegeven en mij op alle vlakken gesteund en gemotiveerd
om mijn talenten te ontplooien. Het afgelopen jaar was er één met tal van
tegenslagen en veel moeilijke en onzekere periodes. Moe, je had er hard naar
uitgekeken om de verdediging van mijn doctoraat mee te maken, maar dat
heeft spijtig genoeg niet mogen zijn. Ik zal je positieve ingesteldheid verder
meenemen in mijn eigen leven. Deze heeft me alleszins geholpen om ondanks
de moeilijke omstandigheden mijn eigen planning aan te houden.
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Het leven zit vol toevalligheden, maar het belangrijkste is hoe je er mee omgaat.
Life is full of coincidences, but the most important is how you deal with them.

Evelyn Heylen
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Abstract

An adequate level of reliability in power systems is crucial due to the criticality
of reliable, but affordable electricity supply for society. Nowadays, power
system reliability is managed based on the deterministic N-1 criterion. This N-1
approach does not aim at cost-optimality and is challenged by the evolutions in
power systems. Probabilistic reliability management on the contrary takes into
account risks related to power system uncertainties and aims at making decisions
based on socio-economic principles. Adequate performance evaluation is required
to convince system stakeholders to change their reliability management.
The objective of this work is to contribute to the fundamental understanding of
performance evaluation and comparison of short-term reliability management
approaches and criteria. A quantification framework is developed, which is
modular and generic in design and takes into account the specific characteristics
of the evaluation of reliability management. A basic implementation of the
quantification framework is applied to test systems to determine characteristics
and trends in relative performance, rather than to find the fundamentally
optimal reliability management approach and criterion. A performance metric
is proposed to verify the technical, economic and social acceptability, practicality
and applicability of reliability management. Missing indices to evaluate the
inequality between consumers in terms of reliability are developed.
Ideally, reliability management is cost-effective, results in a high reliability level
and distributes unreliability equally among consumers. In practice, efficiency,
reliability and equality should be balanced, constituting a ‘performance
trilemma’. Controllable factors of reliability criteria that define intermediate
steps between the N-1 approach and fully probabilistic reliability management
and the level of detail of the value of lost load data have an intertwined
impact on the three aspects of the trilemma. To manage reliability in a way
that considers both society’s preferences and system operator’s capabilities,
a transparent dialogue between power system stakeholders is required and
transmission system operators should carry out the multi-dimensional analysis
proposed in this work for their own systems.
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Beknopte samenvatting

Betrouwbare en betaalbare elektriciteitsvoorziening is een belangrijk basisgoed in
de moderne maatschappij. Daarom is een geschikt niveau van betrouwbaarheid
in het elektriciteitssysteem cruciaal. Vandaag de dag wordt betrouwbaarheid
beheerd aan de hand van het deterministisch N-1 criterium. Het N-1 criterium
streeft niet naar kostenminimalisatie en evoluties in elektriciteitssystemen leggen
de tekortkomingen van dit criterium bloot. Het beheren van betrouwbaarheid op
een probabilistische manier laat daarentegen toe socio-economische afwegingen
te maken, rekening houdend met de risico’s verbonden aan de onzekerheden
in het elektriciteitssysteem. Een adequate evaluatie van de prestaties van
deze alternatieve methodes in vergelijking met de huidige aanpak is cruciaal
om systeemoperatoren en andere belanghebbenden te overtuigen om over te
schakelen op een alternatieve aanpak voor betrouwbaarheidsbeheer.

Het doel van dit werk is om bij te dragen tot de fundamentele kennis van
de evaluatie en vergelijking van betrouwbaarheidscriteria in kortetermijn-
betrouwbaarheidsbeheer. Een modulaire en generische structuur voor een
kwantificatieplatform is ontwikkeld, rekening houdend met de specifieke eigen-
schappen van de evaluatie van betrouwbaarheidsbeheer. Een basisimplementatie
van dit platform is toegepast op testsystemen om karakteristieken en trends
in relatieve prestaties van betrouwbaarheidscriteria af te leiden, eerder dan
om het fundamenteel optimale betrouwbaarheidscriterium te bepalen. De
toegepaste prestatie-indicatoren laten toe om de technische, economische en
sociale aanvaardbaarheid, de praktische toepasbaarheid en de hanteerbaarheid
van betrouwbaarheidsbeheer te evalueren. Ontbrekende indicatoren om de
ongelijkheid tussen eindgebruikers in termen van betrouwbaarheid uit te drukken
zijn ontwikkeld.

Ideaal gezien is betrouwbaarheidsbeheer kosteneffectief, leidt het tot een
hoog niveau van betrouwbaarheid en is onbetrouwbaarheid op een billijke
manier verdeeld over de eindgebruikers. Deze drie aspecten leiden echter
tot een ‘prestatietrilemma’ tussen kosteneffectiviteit, betrouwbaarheid en
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billijkheid. De drie aspecten van het prestatietrilemma worden beïnvloed
door het gebruik van meer gedetailleerde gegevens over de waarde die
eindgebruikers hechten aan de niet-geleverde energie en aanpassingen aan het
huidige betrouwbaarheidscriterium. Er worden aanpassingen voorgesteld die
een geleidelijke overgang naar probabilistisch betrouwbaarheidsbeheer mogelijk
maken. Om tot betrouwbaarheidsbeheer te komen dat binnen de praktische
mogelijkheden ligt van de systeemoperatoren en voldoet aan de maatschappelijke
vereisten, is het belangrijk dat een transparante dialoog gevoerd wordt over
de afwegingen tussen betrouwbaarheid, kosteneffectiviteit en billijkheid en dat
systeemoperatoren de multi-dimensionele prestatieanalyse voorgesteld in dit
werk toepassen op hun eigen systemen.
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Chapter 1

Introduction

1.1 Context of the Research

Reliability of electricity supply plays a major role in the economics and social
well-being of a modern society and directly influences the quality of life [1]. The
cost of a one day blackout is estimated at 0.5% of the gross domestic product
of a country, which needs to be complemented with social consequences, such
as diseases, deaths and injuries [2]. Also short-term interruptions come at a
cost due to loss of production, frozen foods gone bad, traffic accidents,. . . The
Belgian Federal Planning Office has calculated in 2014 that a one hour blackout
during working hours would cost e120 million/hour [3]. Moreover, modern
society’s dependence on electricity is continuously increasing and a lot of critical
appliances, such as mobility and heating, rely more and more on electricity. The
effect on consumers can be such that the reliability of the local energy provision
is key to the selection of a site, particularly for industries such as foundries and
large IT providers. The power system can be seen as one of the most critical
infrastructures and a correct assessment and adequate level of reliability is of
utmost importance.

The power system is also one of the most complex man-made systems in the
world and is continuously evolving. Initial power systems mainly connected
some generating units with a load centre further away. By interconnecting these
small systems in a meshed system, technological and economic advantages were
obtained, because the overall load profile is flatter, the unit commitment is more
efficient and the conventional generating units operate more optimally. Moreover,
less generation reserves are required to handle an (unforeseen) outage and due
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2 INTRODUCTION

to the redundancy incorporated in meshed grids, an outage of a transmission
component does not necessarily result in a power interruption.

Since 1996, both the US and Europe decided to gradually open electricity
markets to competition using unbundling and deregulation or liberalization.1
Unbundling is the separation of supply and generation of electricity from the
operation of transmission networks, whereas deregulation or liberalization is the
process of reducing state regulations. Improved competition has consequently
resulted in a higher importance of cost-effectiveness and socio-economic aspects,
resulting in power systems that are used closer to their limits. Interconnections
are currently used to serve the liberalized electricity market by enabling cross-
border trade, whereas they were historically mainly built for reliability purposes
[7]. For this reason, additional investments are required [7, 8, 9]. However,
building new power system infrastructure is a slow process requiring multiple
interactions between different stakeholders [10]. A large public opposition
exists against the construction of new overhead lines due to visual pollution
and concerns about the effect of electromagnetic fields on human health [11].
New technologies emerge that make it possible to incorporate more flexibility
and reliability-based choices of electricity consumption in power systems, such
as demand-side response [12]. However, it is questioned whether currently-
used reliability management approaches can efficiently incorporate these new
technologies in power systems [13].

Since 2009, the trend of increasing penetration of Renewable Energy Sources
(RES) in power systems, such as wind and solar power generation, was
accelerated by European directives aiming at the reduction of greenhouse gas
emissions. Directive 2009/28/EC specifies that renewable energy should provide
a 20% share in the final European energy demand by 2020. The target for
electricity generation is 34.3% of total electricity demand provided by renewable
energy sources [14]. Fig. 1.1 shows the evolution of wind penetration in the EU-
28 region as well as the electricity production by source in 2016. The installed
wind power capacity has increased significantly the last decade resulting in a
considerable share in the total electricity production in the EU-28 region. Wind
and solar power generation are highly variable and uncertain in nature and
result in more distributed, local generation, compared to the traditional system

1Liberalization of the European electricity sector was initiated in 1996 with the first
electricity liberalisation directive, which should have been transposed in member states’
legal systems by 1998. The second liberalization directive adopted in 2003 and directive
2009/72/EC of the Third Energy Package aimed at further strengthening the competition
in electricity markets [4]. In the US, electricity deregulation was initiated in 1982 with
the implementation of Public Utilities Regulatory Policies Act of 1978. In the late 1990’s,
electricity liberalization started to gradually spread over the states, with the states in the
North-East and California as leads [5]. From 1996 onwards, the Federal Energy Regulatory
Commissions (FERC) issued orders that required utilities to provide transmission services on
a reasonable and non-discriminatory basis [6].
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Figure 1.1: Wind penetration in power systems in the EU-28 region and the
electricity production by source in EU-28 in 2016 [15].

with large centralized generation plants. This distributed, local generation can
lead to power quality problems and increased system stress due to bi-directional
flows.

Although unreliability is expensive, maintaining or improving reliability requires
actions, which are costly as well. Adequate reliability management tries to
make an optimal trade-off between the cost of obtaining a particular reliability
level and the cost of interruptions. Since the formation of the Union for the
Coordination of Production and Transmission of Electricity (UCPTE) in Europe
in 1951, the reliable operation of the interconnected system is ensured by the
N-1 reliability criterion. This is still the basis for today’s reliability management
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of Transmission System Operators (TSOs)2 [16, 17]. Also in the US, the N-1
criterion was introduced after the blackouts of 1965 and 1969. This criterion
states that the system should be able to withstand at all times the loss of any
of its main elements (lines, transformers, generators, etc.) without significant
degradation of service quality. The N-1 criterion is easy to use and transparent
and has lead to satisfactory results in the last decades, but it was developed with
a traditional system in mind with a centrally planned and operated nature of
generation, transmission and distribution [18]. Due to evolutions in the system,
shortcomings of the N-1 criterion has become clear [1, 2, 13, 19, 20, 21, 22, 23]:

• Although the N-1 criterion is straightforward, transparent and widely
used, it in itself can be interpreted in many ways. In practice, neither the
number of elements to be considered (N) nor the type of contingencies
considered (-1) is dealt with equally amongst TSOs and even within a
single organization.

• The criterion currently does not take into account the probability and
severity of contingencies.

• The criterion does not give an incentive based on economic principles,
because it does not take post-fault costs into account and mainly favors
preventive control, i.e. ahead of real time. This might impose a barrier
on the integration of new technologies, which might improve the efficiency
of system operation through the use of corrective actions in real time.

• All consumers are assumed equally important.

• The criterion does not consider the stochastic nature of generation and
demand.

• The criterion is a binary criterion: the system is either reliable or not
reliable. Therefore, an optimal reliability level cannot be obtained or even
calculated, which results in over- or under-investments.

• The criterion only takes into account single contingencies. Single
contingencies are much more probable than double contingencies if outages
are independent events, but hidden failures in the protection system can
trigger additional outages cascaded to the original fault. Furthermore, due
to significant increase of the rate of outages during bad weather conditions,
the probability of two quasi-simultaneous, but independent outages is no
longer negligible.

2The term ‘TSO’ is used throughout this thesis, but the core of the analysis does not
change with the level of ownership unbundling of the network (full ownership unbundling,
independent system operator or independent transmission operator) or with the geographical
area of focus (e.g. in North America: independent system operator or regional transmission
organization)
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Increasing uncertainties, amongst others due to increasing generation of
renewable energy sources in the system, challenge currently used reliability
management approaches and criteria (e.g., Do we consider no wind in Germany
as an N-1 contingency state?, How do we deal with off-shore wind?). Moreover,
reports show that major disturbances occur due to combinations of failures not
dealt with in the N-1 approach, as it deems them as not probable [24, 25, 26].
Especially the major European events in 2003 [27] and in 2006 [28], which were
both disturbances in normal conditions and affected the UCTE system3, have
questioned the use of the N-1 criterion.4
Significant research effort has been placed in the development of alternative,
probabilistic reliability assessment and control approaches that are able to handle
uncertainties more appropriately. First interest in the application of probability
methods to generating capacity requirements became evident around 1933,
whereas for the first academic attempts in probabilistic reliability evaluation of
composite systems, i.e., considering generation and transmission, one needs to
go back to the 60’s. The history of literature on probability methods in power
system reliability evaluation is summarized in [30, 31, 32, 33, 34]. The last
decade, several European funded projects, such as TWENTIES [35], PEGASE
[36], iTesla[37], Umbrella [38] and GARPUR [39], have contributed to the
domain of probabilistic reliability assessment, control or management as a whole.
However, system operators are generally not eager to fundamentally change
their way of reliability management due to the ease-of-use and the transparency
of current approaches and the satisfactory results obtained so far, especially
with respect to the overall reliability level achieved. An adequate evaluation and
comparison of the performance of different reliability management approaches
and criteria is required to quantify potential improvements compared to the
currently used N-1 approach. This can help to convince system operators and
other system stakeholders to initiate a transition and to guide them towards
using an alternative Reliability Management Approach and Criterion (RMAC).

1.2 Scope of the Research

This work focuses on simulation-based assessment of performance of RMACs
used in short-term power system operation. Performance evaluation of short-
term RMACs is an off-line process and consists of four main steps:

3In 1999, the UCPTE re-defined itself as an association of TSOs in the context of the
Internal Energy Market, resulting in the Union for the Coordination of the Transmission of
Electricity (UCTE).

4The event in 2003 resulted in a full blackout of Italy and affected 60 million people and
180 GWh of energy not served. The event in 2006 affected 15 million households spread over
the whole of Europe. The resynchronization of the UCTE system was accomplished in 38
minutes and the normal situation was restored in less than two hours [29].
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1. Selection and calculation of performance indicators

2. Selection of a performance evaluation technique and appropriate sampling
technique

3. Simulation of TSO’s decision-making behavior for different short-term
RMACs

4. Post-processing of results and comparison of performance of different
RMACs

The performance of RMACs covers a spectrum of opposing aspects that
determine the applicability and acceptability of an RMAC in practice. Different
classes of quantitative indicators can be distinguished from which an appropriate
set of indicators should be selected that cover the quantitative aspects
determining performance. The applied performance evaluation technique should
adequately represent the variabilities and uncertainties present in power systems
in the quantitative performance indicators. Some performance aspects are hard
to capture in a quantitative indicator, which requires qualitative indicators to
be considered as well.

Simulation of short-term decision-making behavior of a TSO according to
different RMACs is a multi-faceted task. The TSO decision-making process
is largely interlinked with external systems and actors, such as electricity
markets, producers and consumers, which are out of the control of the TSO.
Moreover, short-term reliability management consists of multiple decision stages,
which are interdependent and influenced by the decision-making processes on
longer time horizons, such as system development, maintenance and asset
management. Reliability management is also subject to a bunch of variabilities
and uncertainties due to load, renewable energy sources, component failures,
etc., that different RMACs deal with in different ways.

A practical application of alternative RMACs requires a comparison of the
performance of RMACs for different external conditions. It is important to
identify the sensitivity of the performance of RMACs to exogenous factors that
are out of system operators’ control. To improve the performance of RMACs
for different external conditions, controllable factors to influence each of the
performance aspects should be determined.

1.3 State-of-the-Art in Literature

Reliability management based on the N-1 criterion has been frequently
questioned during the last decade. Studies argue that a radically different
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approach may be required to integrate renewable energy sources and smart
grid technologies in a cost-effective way [13, 40, 41, 42, 43]. They argue that
probabilistic RMACs are better suited to meet the current challenges of the
electricity transmission system: uncertain and variable demand and supply,
decentralized decision makers, highly interconnected networks, difficulties in
building new lines and a general trend towards a more efficient use of the
transmission system [13]. A large number of papers is proposing probabilistic
approaches for reliability management as alternative for the currently-used
deterministic N-1 reliability criterion. Part of them focus on probabilistic
reliability assessment, whereas another part focuses on stochastic Security
Constrained Optimal Power Flow (SCOPF) formulations to assist TSO decision
making.

Probabilistic short-term reliability assessment discussed in literature is typically
based on risk-based indices. Risk is defined as the combination of the probability
of occurrence of harm and the severity of that harm [44]:

Risk = probability · severity (1.1)

Risk-based indices can either directly quantify the physical risk [45, 46] or socio-
economic risk [22, 47] for end-consumers or indirectly quantify the risk in terms
of physical system parameters, such as overload or undervoltage, impacting
system security [40, 41, 46, 48, 49, 50, 51, 52]. Each of the approaches differs in
terms of how the considered contingencies are selected, i.e., using a predefined
set of contingencies [40, 41, 46, 48, 49, 50, 51] or random selection based on
failure probabilities [45, 47, 53, 54]. These papers mainly focus on decision
support, i.e., how can the operator be assisted in making decisions, taking into
account risks. The main decision maker is still the operator. The Icelandic
TSO Landsnet has experimented with probabilistic reliability assessment in the
context of the GARPUR project and provided real-time risk information to the
system operators in the control room [55].

Alternatively, a significant amount of work has already been done on advanced
and improved SCOPF formulations to simulate the decision-making behavior of
system operators to assist them in their decision making. The actions that should
optimally be taken by the system operator are outcomes of these optimizations.
Stochastic SCOPF formulations can take into account forecast uncertainty of
RES and load and contingency risk [56]. Capitanescu et al. give a concise
overview of the state-of-the-art, the challenges and future trends in security
constrained optimal power flow [57]. They mainly focus on the theoretical part
of the problem, i.e., how to obtain a more detailed simulation of decision-making
behavior. However, directly moving from a deterministic N-1 criterion to a fully
probabilistic approach based on a stochastic security constrained optimal power
flow is challenging in practice. Probabilistic approaches based on optimization
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are much less transparent for the system operators, as the optimization can be
seen as a black box model from his/her perspective. In this case, the operator
relies much more on the software rather than on his own experience and
analysis. Moreover, detailed modeling of the decision-making process of short-
term reliability management covering aspects, such as stability issues, cascading
failures [58], different reliability targets in different areas, etc., is challenging
[57]. The optimization is also computationally intensive, which challenges the
tractability, especially in real, large scale systems. Intermediate steps to bridge
the gap between the deterministic N-1 approach and fully probabilistic RMACs
should be determined and the change in different performance aspects should
be evaluated. Moreover, their sensitivity to various exogenous factors should be
assessed to assist power system stakeholders in their move towards improved
reliability management.

Although there is a need to appropriately evaluate and compare RMACs to
convince power system stakeholders to apply alternative RMACs in practice,
the topic is not well covered in literature. Existing studies only focus on specific
parts of the problem without integrating them. They propose alternative
decision-making tools [59, 60], compare probabilistic and deterministic security
assessments [22, 40] or evaluate and compare performance of various reliability
management approaches focussing on the interdependence between market
performance and system security [61]. SAMREL is an integrated approach for
reliability of electricity supply analysis [62]. However, it focuses on long-term
planning aspects and considers only deterministic reliability criteria and a
limited amount of candidate decisions in the short term. Also literature on
specialized techniques to adequately evaluate the performance of short-term
RMACs is non-existing, although performance evaluation of RMACs has its
own characteristics and differs from traditional reliability assessment in some
crucial aspects. A complete and reliable performance evaluation requires that
both the real-time system state resulting from reliability management and the
decision-making trajectory followed while executing reliability management are
evaluated [63, 64]. Reliability assessment on the contrary mainly focuses on the
real-time system state. Another important difference is that especially failure
states are of interest for reliability assessment. Performance evaluation on the
contrary also has to evaluate the performance of reliability management in
normal states.

1.4 Objectives of the Research

The main objective of this work is to contribute to the fundamental
understanding of performance evaluation and comparison of short-term reliability
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management approaches and criteria. The main question raised in this respect
is: How to evaluate and compare different reliability management approaches
and criteria? Several sub-questions can be raised in this context, of which the
following subset will be dealt with in this thesis:

1. How should performance of short-term RMACs be defined? Are all
necessary indicators available?

2. Which modules are required in a quantification framework to evaluate
and compare performance of short-term RMACs? What do they represent
and how do they interact?

3. How can techniques that are applied in reliability assessment or other
performance evaluation contexts be applied to evaluate performance of
short-term RMACs, taking into account the typical characteristics of
performance evaluation of short-term RMACs?

4. How to define and assess inequality and inequity in a power system
reliability context?

5. What is the impact of the level of detail of value of lost load data on the
performance of short-term RMACs?

6. Which controllable factors of RMACs can bridge the gap between a
deterministic N-1 criterion and a fully probabilistic RMAC? What are the
trends in terms of different performance aspects?

These questions are answered by taking following actions:

1. The study of available quantitative and qualitative performance indicators

2. Design and development of a modular and generic quantification framework
for evaluating and comparing performance of power system reliability
management approaches and criteria

3. The study of performance evaluation techniques to apply in the developed
quantification framework

4. The development of missing performance indicators to quantify inequality
and inequity between consumers in terms of reliability

5. An assessment based on an economic model and numerical analysis of
reliability management for VOLL data with different levels of detail based
on real VOLL data of Norway, Great Britain and the United States
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6. The study of controllable factors in short-term reliability management
based on a multi-dimensional performance analysis starting from the
formulation of the deterministic N-1 approach

The focus in the case studies is on trends in the average performance that
can be distinguished if different RMACs are applied, rather than on the exact
numbers of the change in performance. For this reason, the analyses are limited
to small-scale test systems. The objective of this work is not to develop the
optimal RMAC for actual, large-scale systems.

The research focuses on short-term reliability management at the transmission
system level. TSO decision-making behavior in the simulations is modeled in
an approximate way using a DC SCOPF. Only steady-state security issues are
considered, whereas dynamic effects, such as stability issues, are ignored in the
analysis. Also the restoration process or cascading failures are not considered
in the simulations and cross-border effects due to the application of different
reliability targets in different control zones are neglected. Possible failure of
corrective actions is not considered.

1.5 Research Context: The GARPUR Project

This research fits within the wider scope of the European FP7 project GARPUR,
which stands for Generally Acceptable Reliability Principle with Uncertainty
modeling and through probabilistic Risk assessment.5 The overall objective
of this project was to design, develop, assess and evaluate new, probabilistic
RMACs that aim at maximizing social welfare.6

The main focus of KU Leuven, and specifically the ELECTA research group, in
this project was on the development of a quantification platform to evaluate
and compare the performance of the newly developed GARPUR RMAC with
the deterministic N-1 approach. This thesis work has served as an input to the
modular and generic design of the prototype of this quantification platform in
the first year of the project.7

5http://www.garpur-project.eu
6The project was a collaboration between 7 TSOs, 12 R&D providers and 1 innovation

management expert.
7Colleagues of the ELECTA research group together with project partners from other

universities and industry have worked on a more advanced implementation of the quantification
framework. This thesis focuses more specifically on the performance evaluation and comparison
of RMACs using a basic implementation of the quantification framework in the case studies.

http://www.garpur-project.eu
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1.6 Structure of the Text and Contributions

The main contributions of the work are in Chapters 3 to 8, which are based
on papers published or submitted for publication in scientific journals or
international conferences. Two main parts can be distinguished. The first
part, consisting of Chapters 3, 4, 5 and 6, focuses on the assessment of the
performance of RMACs from a more methodological point of view. The four
main steps, i.e., indicator selection, selection of a performance evaluation
technique, simulation of the TSO decision-making process and comparison, are
discussed in more detail. The second part, consisting of Chapters 7 and 8,
focuses more on the RMACs, and more specifically on their relative performance
and how this is impacted by exogenous and controllable factors. A graphical
overview of the structure of the text is shown in Fig. 1.2.

Context

Performance evaluation and comparison

Chapter 6: Inequality and inequity

of power system reliability

Performance of RMACs

Chapter 1: Introduction

Chapter 2: Steady-state security

and short-term reliability

management

Chapter 9: Conclusions,

recommendations and future

work

Conclusions

Chapter 3: Reliability

management performance metric

Chapter 5: Performance

evaluation techniques

Chapter 4: Modular and generic

design of quantification framework

Chapter 7: Impact of VOLL on

performance of RMACs
Chapter 8: Classification of

RMACs

Figure 1.2: Overview of the text.

Chapter 2 is an introductory chapter that provides the theoretical background
knowledge about steady-state security and short-term reliability management.
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The terminology used in the remainder of the work is introduced.

Chapter 3 elaborates on the indicators to be used in order to obtain a complete
picture of the performance of short-term RMACs. Appendix A gives an overview,
classification and characterization of indicators presented in literature. Based
on the overview of indicators, missing indicators required to obtain a complete
performance evaluation are identified. The contributions of this chapter are
(i) a classification of power system reliability related indicators available in
technical and scientific literature and (ii) a performance metric for reliability
management that defines different aspects determining the performance of an
RMAC and appropriate indicators to assess them.

Chapter 4 elaborates on the developed quantification framework for evaluating
and comparing performance of power system reliability management approaches
and criteria. This quantification framework forms the basis for the numerical
simulations done in the remainder of this work. The modular design of
a framework to quantify the performance of various reliability criteria by
evaluating both the real-time system state as well as the decision-making
trajectory of the short-term reliability management process is the main
contribution in this chapter. The focus in this chapter is on the modular
design of the simulation module and its implementation used in the case studies
in later chapters.

Chapter 5 focuses on techniques to evaluate performance of short-term RMACs
that can be applied in the quantification framework discussed in Chapter 4.
Existing evaluation techniques, typically used in a context of power system
reliability assessment or other performance evaluation application contexts, are
discussed and compared. An overview and comparison of performance evaluation
techniques, taking into account the specific characteristics and requirements
of performance evaluation of short-term RMACs, are the main contributions
of this chapter. Moreover, the problem under evaluation is represented in a
condense, analytical way, which facilitates the comparison between techniques.

Chapter 6 elaborates on the importance of considering inequality and inequity
in a power system reliability context. The main contributions of this chapter are
(i) the application of the concept of inequality and inequity in a power system
reliability context and (ii) indices to express the inequality and inequity of the
distribution of power system reliability among consumers in the system. The
usefulness of the proposed indices is illustrated in three case studies: the analysis
of the Belgian load-shedding plan of the winter of 2014-2015, the analysis of real
reliability data of Norway and the comparison of short-term RMACs. Measures
to reduce inequality and inequity are discussed.

Chapter 7 analyzes the impact of Value Of Lost Load (VOLL) on the performance
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of short-term RMACs. VOLL should be considered in reliability management
based on socio-economic principles that makes a trade-off between preventive,
corrective and load curtailment actions. The objective of this chapter is to
assess the impact of the level of detail of VOLL data in short-term reliability
management. VOLL depends on several exogenous factors and interruption
characteristics. The main contributions of this chapter are (i) a literature survey
of studies published since 2007 that estimate the effect on VOLL of at least
two interruption characteristics and (ii) a theoretical model to show potential
efficiency gains if temporal and spatial differentiation in VOLL data are applied
in reliability management. The conclusions are supported by numerical analyses
of a test system to which VOLL data of three different countries are applied that
have different absolute levels of VOLL and different levels of detail. Possible
solutions to enable the practical implementation of more detailed VOLL data
are suggested.

Chapter 8 focuses on the RMACs themselves: what are their characteristics and
how do they differ between each other. A classification framework of reliability
criteria based on a limited set of controllable factors that bridge the gap
between the deterministic N-1 approach and a fully probabilistic RMAC is the
main contribution of this chapter. This classification framework facilitates the
understanding of differences between reliability criteria proposed in specialized
literature. Six reliability criteria are assessed in a multi-dimensional performance
analysis, which illustrates the difficulties to adopt alternative criteria in a
practical context. Also possible improvements are revealed in relation to the
commonly used N-1 criterion.

Chapter 9 concludes the text. It summarizes the key messages of this work,
makes recommendations to power system stakeholders and proposes important
topics to further investigate in the context of evaluation and comparison of
reliability management approaches and criteria.

Appendices A - D support the main chapters by providing resp. more
detailed information about the indicators available in literature, the GARPUR
quantification platform, the assumptions made in the modeling and the applied
test system.





Chapter 2

Steady-State Security and
Short-Term Reliability
Management

This chapter elaborates on the theory behind steady-state security and explains
its relation to the other aspects determining reliability. The objective of this
chapter is to provide the theoretical background required to grasp the concepts
in the remainder of this text.

Section 2.1 gives some general definitions of terms frequently used in the
remainder of this text. Section 2.2 explains reliability management in more
general terms. Section 2.3 dives deeper into the different decision stages
in reliability management. Section 2.4 makes the link between reliability
and costs, which is crucial to obtain cost-effective and efficient reliability
management. Section 2.5 discusses short-term reliability management according
to probabilistic and deterministic approaches in more detail. Section 2.6
concludes this chapter.

Parts of this chapter are based on Steady-state security, Heylen E., De Boeck S.,
Ovaere M., Ergun H., Van Hertem D., In J. Rueda Torres and F. M. Gonzalez-
Longatt editors Dynamic Vulnerability Assessment and Intelligent Control for
Sustainable Power Systems, John Wiley & Sons, 2017, ISBN: 978-1-119-21495-
3, (In press) and Importance and difficulties of comparing reliability criteria
and the assessment of reliability, Heylen E., Van Hertem D., Young Researchers
Symposium, Ghent, 2014.

15
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2.1 Definitions

Power system reliability is defined as the ability of an electric power system to
perform a required function under given conditions for a given time interval
[44]. It quantifies the ability of a power system to provide an adequate supply
of electrical energy satisfying the consumer requirements with few interruptions
over an extended period of time. Power system reliability consists of power
system security and power system adequacy [65]. An adequate power system
has sufficient generation, transmission and distribution facilities in the system
to satisfy the aggregate electric power and energy requirements of consumers
at all times, taking into account scheduled and unscheduled outages of system
components [23]. System security describes the ability of the system to handle
disturbances, such as the loss of major generation units or transmission facilities
[23].8 Power system security and adequacy are strongly interdependent, since
adequacy is subject to transitions between different states, which are in the
strict sense no part of the adequacy analysis, but of the security analysis [18].
Adequacy and security of a power system are interlinked with its coping capacity.
The coping capacity describes the ability of the operator and the power system
itself to cope with an unwanted event, limit negative effects and restore the
power system’s function to a normal state [67]. The coping capacity of the
power system together with its susceptibility determine the power system’s
vulnerability to external threats that can lead to failure modes. If a realized
threat leads to an unwanted event in the power system, it is susceptible to
this threat. A power system’s vulnerability is an expression of the problem
the system faces to maintain its function if a threat leads to an unwanted
event and the difficulties to resume its activities after the event occurred [67].
Vulnerability is an inherent characteristic of the system and depends on the
working force of the TSO, its organizational structure and the technical aspects
of the system, such as the availability of the components, which is determined
by their reliability and maintainability [68].9 The reliability of the system
is determined by its vulnerability, the threats it is facing and the reliability
criterion that is applied. The interlinking between different aspects, determining
the system’s reliability level, are indicated in Fig. 2.1.

8The North American Reliability corporation (NERC) denotes security as operational
reliability [66]

9Maintainability is defined as the probability of performing a successful repair action
within a given time [44].
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Figure 2.1: Interactions between the aspects determining reliability of power
systems.

2.2 Reliability Management: A Combination of
Reliability Assessment and Reliability Control

Power system reliability management is defined as taking a sequence of decisions
under uncertainty to meet a reliability criterion, while minimizing the socio-
economic costs [69]. It aims at serving load with a very high probability and
this with the required quality and with a very low frequency of experiencing
large system failures, such as blackouts [23]. The power system reliability
management process of transmission system operators is illustrated in Fig. 2.2.
It consists of two main tasks: i) reliability assessment and ii) reliability control.
Reliability assessment aims at identifying and quantifying the actual reliability
level. The main objective of reliability control is to keep the system within
an acceptable reliability level range or bring it back to a state that has an
acceptable reliability level, preferably minimizing the socio-economic costs. To
do this, a decision should be selected from the list of candidate decisions taking
into account the results of the reliability assessment. This decision can imply a
reliability action affecting the system or no action.

2.2.1 Reliability Assessment

Reliability assessment focuses on answering three questions: (1) What can go
wrong?, (2) How often will it happen? and (3) What are the consequences if
it happens? [70]. Reliability assessment methods calculate indicators to verify
whether reliability criteria are satisfied.

Reliability assessment is a combination of security assessment and adequacy
assessment. Adequacy assessment verifies whether the system is capable of
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Figure 2.2: Overview of reliability management.

supplying the load under specified contingencies without violating operational
constraints. Security assessment on the contrary determines whether immediate
response of the system to a disturbance generates potential reliability problems
[71]. A distinction is made between dynamic (time-dependent) and static or
steady-state (time-independent) security assessment, depending on whether
transients after the disturbance are neglected or not. Steady-state security
assessment evaluates whether a new equilibrium state exists for the post-
contingency system, whereas dynamic security assessment investigates the
existence and security level of the transient trajectory in the state space from the
original pre-contingency equilibrium point to the post-contingency equilibrium
point. The power system in dynamic security assessment can in general be
modeled by non-linear differential equations whose boundary conditions are
given by the non-linear power flow equations.

dx
dt

= k(x,y,a) (2.1)

0 = h(x,y,a) (2.2)

x is the vector of state variables, y is the vector of uncontrollable, independent
external forcing inputs, a is the vector of control variables, k is a set of nonlinear
differential equations, e.g., generator mechanical equations, and h a set of
nonlinear algebraic equations, e.g., load flow [72]. Static security is considered
as a first-order approximation of the dynamic power system state, i.e., dx

dt = 0
[73]:

0 = k(x,y,a) (2.3)
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0 = h(x,y,a) (2.4)

Alternatively, pseudo-dynamic evaluation techniques exist that use sequential
steady-state evaluation to assess the impact at several post-contingency stages
[74].

2.2.2 Reliability Control

During the reliability assessment, the state of the power system is determined
taking into account the applied reliability criterion. Based on that state,
the reliability control mechanism selects a reliability decision from the list of
candidate decisions. Decisions imply either a reliability action or no action.
Executed reliability actions aim at ending up in a state of the system for which
the reliability criterion is satisfied and system security is ensured. This can be
graphically illustrated using the State-Space Border Representation (SSBR),
as shown in Fig. 2.3. This abstract visualisation depicts the current system
operating point relatively to the security border. The location of the operating
point, indicated by the black square, is determined by all system variables,
such as active power injections, reactive power injections, tap positions of
transformers, setpoints of phase-shifting transformers and set points of High-
Voltage Direct Current (HVDC) connections. Therefore, the state space can
be considered as a multi-dimensional space, with the number of dimensions
equal to the number of constrained system variables [29]. The operating point
continuously moves around as the system variables are subject to smaller and
larger changes, such as load and generated power variations. The uncertainty
regarding the system variables has increased during the last decade, which
resulted in an increase of the surface area of the uncertainty cloud around the
exact operating point, as shown in Fig. 2.3a and 2.3b. Component outages can
result in a change of the system limits reducing the secure area, as shown by
the dashed area in Fig. 2.3c for a line outage. Alternatively, a generator outage
can move the original operating point (‘1’ in Fig. 2.3d) outside the secure area
(‘2’ in Fig. 2.3d). If the operating point moves out of the secure area, the
operator will take actions to restore the system to a secure state as indicated by
the arrow in Fig. 2.3c and the arrow between ‘2’ and ‘3’ in Fig. 2.3d. Ideally,
reliability control performs these actions at a minimal total system cost.

Reliability control actions can be taken on different time horizons and consist of
multiple decision stages, with different degrees of available flexibility. Available
reliability actions depend on the considered decision stage and time horizon.
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Figure 2.3: State-space border representations for different cases.

2.3 Main Decision Stages of Reliability Manage-
ment

Overall power system reliability management is a multi-faceted and multi-
dimensional decision-making process, ranging over a time span of years. It
can be split in three main decision stages: long-term system planning and
development [75], mid-term asset management and maintenance [76], and short-
term operational planning and real-time operation [69]. These decision stages
are strongly interlinked, consist of multiple processes and range over different
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time horizons, as shown in Fig. 2.4. Decisions taken on longer time horizons
have an impact on shorter time horizons, as they can restrict the actions that
are available or require outages to be planned. Moreover, flexibility available in
short term should also be considered in long-term decision making.
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Figure 2.4: Overall power system reliability management split in three main
decision stages ranging over multiple time horizons. (Remade after [69, 75, 76])

Uncertainty is higher the larger the time to actual operation, i.e., the system
planner faces substantially larger uncertainties than the operator in the control
room, as shown in Fig. 2.5. The state of the grid is more certain closer to real
time, as well as the generation and load injections in the system. However, the
flexibility and possibilities in terms of actions is higher the further from actual
operation. The system planner is able to change the system more drastically, e.g.,
by building new transmission lines or flexible devices, such as a Phase-Shifting
Transformer (PST), whereas the operator in the control room only disposes
of the equipment available at the moment of real-time operation. Because of
these differences, reliability management is performed differently in the different
decision stages. This work mainly focuses on short-term operational planning
and real-time operation.
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Figure 2.5: The uncertainty and flexibility space in various time frames [77].

2.3.1 Long-term Reliability Management: System Develop-
ment

Long-term system development is defined to range from more than 10 years up to
less than 5 years ahead of real-time [75]. The objective of system development is
to install sufficient facilities in the system to enable it to be operated according to
the relevant operating standards, taking into account the variation of generation
and demand in time and space [75]. The system planner should answer four
main questions [10]: (i) Where to invest?, (ii) What type of investment?, (iii)
When to invest? and (iv) Who is going to pay for the investment?

Where traditional long-term system planning focused on extreme cases of
demand, the number of analyzed generation and demand cases has been
gradually increasing with the computational power that has become available.
A larger set of cases covers more effectively the volatility in power flows due
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to renewable generation. These cases are used in a cost-benefit analysis to
determine the necessary investments and topological changes in the system.
Both cost savings in long-term system design and daily operation are considered.

Besides transmission system development, generation adequacy or security of
supply is important to consider in the longer term. No harmonized European
or regional standards exist to verify the adequacy, so each TSO adopts its own
criterion. The Belgium system operator ELIA uses a probabilistic assessment to
calculate the Loss Of Load Expectation (LOLE) and the LOLE95. The LOLE is
the anticipated number of hours during which it is not possible for all available
generation resources to cover the load in the system for a statistically normal
year [78]. The LOLE95 has the same definition, but considers a statistically
abnormal year. The thresholds on these indicators differ between countries in
Europe, ranging from 3 hours per year in Belgium, France and Great Britain
up to 8 hours per year in the Republic of Ireland. Furthermore, some countries,
e.g., Sweden and Spain, use different indicators to verify the adequacy [79].
An adequate level of strategic reserves should be contracted to guarantee the
security of supply.

2.3.2 Mid-Term Reliability Management: Maintenance and
Asset Management

Mid-term reliability management includes both maintenance and asset
management and is defined to range from roughly 1-2 years up to 1-2 months
ahead of real-time operation [76]. In this time horizon, analyses for maintenance
and replacement operations are carried out based on historical data rather than
measured data, e.g., for weather forecasts. Although there is still significant
uncertainty regarding the operational state, uncertainties are sufficiently reduced
to perform a rough assessment of the future power system reliability level and to
take preliminary actions to overcome the threats that are detected. Options to
construct new transmission infrastructure are no longer available, but replacing
conductors, installing reactive power devices or preparing protection schemes
are feasible actions. These actions may require that other grid components
are put out of service while the action is carried out. These scheduled outages
should be planned in such a way that the system and its end-users are minimally
affected.

Maintenance actions have a direct cost, but appropriate maintenance actions
increase the reliability of the affected system components, resulting in less
indirect costs at later decision stages. A good trade-off should be made
between direct and indirect costs to avoid that expensive asset management is
insufficiently compensated by reliability improvements [76].
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2.3.3 Short-Term Reliability Management: Operational Plan-
ning and Real-Time Operation

Short-term operational planning and real-time operation is defined to range
from the point where forecasts are available up to real-time [69]. Short-term
operational planning prepares the system for secure operation and potential
contingencies in real-time operation. It is not possible to add new infrastructure
to the system at this point in time. Actions are restricted to the existing and
available system components [69].

Eight main processes are distinguished in operational planning and real-time
operation [69]:

1. Operational policies: Development and revision of operational policies
regulating the methods and procedures to be used by system operators.

2. Forecasting: Spatio-temporal prediction of power supply and demand (by
the use of mathematical models).

3. Determination of network capacities: Description of the technical
congestions limiting the flow of power between nodes and regions.

4. Outage execution: Scheduling of forced outages requested in the asset
management and system development decision stage.

5. Reserve management: Contracting long-term reserves, commitment of
generators to act as reserves, activation of reserves and settlement of
reserves.

6. Voltage control: Planning and execution of voltage control actions to
maintain secure voltage levels across the transmission system. Voltage
control actions are changing reactive power generation, setting of
transformer tap positions, switching of on/off shunt reactors and other
reactive compensation devices.

7. Control of component loading: Preventing power flows to violate
operational limits of transmission system components taking into account
the health of individual components passed from asset management tasks.
Available control actions are PST adjustment, topological actions, set-point
changing in HVDC converters (back-to-back, embedded connections and
combined operation of links), generation redispatch and load curtailment.

8. System protection: Development and execution of system protection
schemes, which are automated grid actions that are used in emergency
states.
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These tasks are also indicated in Fig. 2.6, together with their time span and
their sub-tasks.

2.4 Reliability and its Cost

Efficient reliability management in the different decision stages makes a trade-off
between the cost to obtain a certain reliability level, i.e., reliability costs, and
interruption costs for end-consumers if a certain amount of electricity is not
supplied. However, TSO’s decision-making behavior is influenced by external
actors that are out of TSO’s own control, but are affected by the reliability
of power systems. Each of these stakeholders experience their own costs and
benefits. Fig. 2.7 gives an overview of the interactions between different
stakeholders in terms of costs and benefits.

2.4.1 Reliability Costs

Reliability costs are defined as the sum of all the costs to obtain a certain level
of reliability. Unreliability is determined by the frequency, duration and the
extent of consequences of system malfunctioning. The reliability level can be
maintained or improved by working on one or several of these aspects by taking
appropriate actions in the different decision stages introduced in Section 2.3.
These actions result in reliability costs for system operators. Reliability costs
are increasing with the reliability level and reach infinity for a system with
100 % availability on all nodes [77].

2.4.2 Cost of Power Interruptions

Several types of power interruptions can be distinguished, such as a blackout, a
brownout, a rolling blackout, load shedding, a local power interruption or load
curtailment. A blackout is an unexpected, uncontrolled, complete interruption
of power in a particular service area for an undefined period of time. Brownouts
are deliberate decreases of system voltage (10%-25%) for a short period of
time to prevent the system from failing completely. Most electronic devices do
not suffer much from this suboptimal voltage, except for sensitive electronic
equipment requiring precise voltage. These sensitive devices might not be able
to function and can wear out prematurely due to long-term brownouts. Load
shedding corresponds to intentional, controlled power cuts to avoid wider and
uncontrolled problems and is applied in rolling blackouts. During a rolling
blackout, the electricity supply is intentionally switched off in indicated areas
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Figure 2.7: High-level interactions of costs and benefits of different stakeholders
in power system reliability management. (Remade after [80])

for a fixed period of time.10 Local power interruptions are unexpected and
uncontrolled and are typically the result of an event without system-wide impact
that results in a local power outage. Load curtailment entails the voluntarily
reduction of load by consumers upon the request of the system operator to
avoid load shedding or rolling blackouts or to improve efficiency of operation
[81].

However, irrespective of the type of power interruption, consumers will incur a
cost as they are not able to use the system for their intended use. This cost
depends on the extent of the interruption (both in duration and magnitude)
and the consequences of the interruption. The interruption extent is measured
as Energy Not Supplied (ENS) [MWh], which is the product of the interrupted
load [MW] and the interruption duration [h]. The value assigned to the unserved
energy is denoted as the value of lost load. It represents the consequence of
the interruption in terms of the average consumer cost, e.g., broken appliances,
spoiled food, failed manufacturing, lost utility of electrical heating, etc., of a
one-MWh interruption. VOLL is typically difficult and complex to model, as it
is dependent on the location (e.g., what is the temperature at the location?),
outage attributes (What is the duration, frequency, time, magnitude, . . . of the
outage?) and consumer attributes.

10Rolling blackouts were a hot topic in Belgium in the winter of 2014 - 2015. System
adequacy was low at that time due to the retirement and mothballing of conventional power
plants, supplemented by the unforeseen closure of three large nuclear units as a result of
indication of micro-cracks in two of the reactor vessels and an outage due to sabotage.
Eventually, they were not applied.
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2.4.3 Optimal Reliability Management

The objective of optimal reliability management from a society perspective
is maximization of social surplus. Social or socio-economic surplus is defined
as the sum of surplus or utility of all stakeholders, including external costs
and benefits, e.g., environmental costs [80].11 However, social surplus is hard
to determine, as not all data are available, especially not while performing
short-term reliability management. Under two simplifying assumptions, surplus
maximization can be approximated by the minimization of the sum of reliability
and interruption costs [80]:

1. Changes in the electricity market should not change the behavior of
electricity market actors, such as producers and consumers.

2. Changes in the electricity market should have little effect on other markets.

These two assumptions are never fully met. For example, if electricity becomes
more expensive, consumers buy slightly less electricity and have less remaining
budget to buy other goods. The sub-optimal reliability level is then the level at
which the sum of reliability and interruption costs is minimal.

Total costs as a function of the reliability level ρ are represented in Fig. 2.8
by the solid line. Interruption costs, represented by the dashed-dotted line
in Fig. 2.8, decrease with increasing reliability level, whereas reliability costs,
represented by the dashed line in Fig. 2.8, increase with increasing reliability
level. The optimal reliability level ρ∗ is obtained at minimal total cost. It
corresponds to the reliability level where the marginal reliability costs equals
the marginal interruption cost. If the reliability level is above the optimal
level, interruption costs are too low, whereas reliability costs are too high.
If the reliability level is below the optimal level, interruption costs are too
high, whereas reliability costs are too low. To determine if certain actions are
increasing or decreasing total costs, the marginal cost and benefit of all possible
actions need to be compared, i.e., one has to compare the cost of the action
and the resulting decrease of interruption costs.

The optimal reliability level is hard to obtain in practice. Exact values for costs
are hard to calculate, because the exact shapes of the functions of interruption
cost and reliability cost are hard to determine. Moreover, the optimal reliability
level changes over time, depending on external conditions such as e.g., weather.
This is shown in Fig. 2.8b for the case with higher reliability cost, e.g., if a

11Socio-economic or social welfare has a broader scope as it considers the aggregate utility
from all existent markets, whereas surplus is the additional aggregate utility from the existence
of one market, e.g., the electricity market [80].
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Figure 2.8: Total costs ( ), interruption costs ( ) and reliability costs
( ) as a function of the reliability level ρ.

sudden drop in RES output is to be expected, and Fig. 2.8c for the case with
increased interruption costs, e.g., if harsh weather conditions are expected.

2.5 Deterministic and Probabilistic Short-Term Re-
liability Management Approaches and Criteria

Optimal reliability management, making a trade-off between reliability cost and
interruption cost, is typically probabilistic in nature to take into account the risks
related to the uncertainties in power systems. However, probabilistic approaches
are seldom used in practical short-term power system reliability management
so far. The currently-used N-1 criterion is deterministic. Deterministic and
probabilistic approaches differ in several aspects of which one is the set of
contingencies considered in the decision making.
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2.5.1 Contingencies

A contingency is defined by the European Network of Transmission System
Operators for Electricity (ENTSO-E) as the trip of one single or a combination
of several network elements that cannot be predicted in advance [82]. High
Impact Low Probability (HILP) contingencies are rare contingencies, which have
a high impact due to their duration or their extent. They are typically caused by
exceptional technical malfunctions, "force majeure" conditions, common mode
failures or human errors and are most of the time tackled by the defense plan
that is used in an emergency state [29, 83].

The literal meaning of the word contingency is "a future event or circumstance
which is possible, but cannot be predicted with certainty". The notion of the
word contingency in the context of power system reliability can be extended
with state-space uncertainty, e.g., forecast errors in terms of wind and solar
power generation and load. A scheduled outage, due to for instance maintenance
activities, is not considered as a contingency.

In practice, it is impossible to consider and calculate all possible contingencies
in reliability management, because the number of possible combinations of
component outages increases as 2N , with N the number of components in the
system, and the state space representing load and generation uncertainty is
continuous. For this reason, appropriate rules or state-selection techniques are
required [84] or a discarding principle should be used in reliability management
[85].

2.5.2 Deterministic Reliability Management

Deterministic RMACs are based on a prescribed set of credible contingencies
and do not explicitly consider the probability and severity of these contingencies.
Currently-used approaches only consider outages of components as contingencies,
whereas uncertainty due to load and renewable power generation is not
considered. Nowadays, the N-1 criterion is the most widely used security
criterion in operational planning. Although the definition of the N-1 criterion
is straightforward, i.e., the system should be able to withstand at all times
the loss of any single element without significant degradation of service quality,
its implementation differs between TSOs. Each TSO selects a set of credible
contingencies, consisting of normal contingencies in its own system and some
neighboring systems, as well as some exceptional contingencies. The loss of
a single network element, e.g., a single line, a transformer or a generator, is
considered as a normal contingency. Exceptional contingencies consist of a
single event that affects multiple network components. The system should be
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secured against this set of credible contingencies, i.e., a credible contingency
should not result in an unacceptable disconnection of load, a cascading outage
or any other form of instability [86].12

Besides N-1, other deterministic reliability criteria exist and are in use. The N-
2 criterion is used in parts of the United Kingdom where a higher security
is required. It prescribes that the system should be secured against the
simultaneous loss of two independent system components during normal
operation [88]. In parts of Norway, for instance in very remote regions, the N-0
criterion is applied. This might result in a partial interruption of the power
supply to consumers due to the loss of a single element causing violation of
operational limits. Some TSOs do not have the strict interpretation that no loss
of load is accepted, but have a certain limit to the loss of load that is accepted
in the case of a failure [89]. Some TSOs apply the N-1-1 criterion or consecutive
N-2 criterion, which considers a sequence of events consisting of the initial loss of
a single generator or transmission component, followed by system adjustments,
followed by another loss of a single generator or transmission component [90].
The TPL-001-1 standard of NERC specifies a deterministic criterion which is
based on four categories of events with different post-fault requirements, as
summarized in Table 2.1.

Table 2.1: System performance under normal conditions according to NERC
TPL-001-1 standard [91, 92].

Category System stable Loss of demand Cascading outages

N-0 Yes No No
N-1 Yes No No
N-k Yes Planned/controlled No
N-1-1 Yes Planned/controlled No

In the past decades, operational experiences using these deterministic RMACs
have been very good due to the predictability and controllability of power system
operation. Moreover, N-1 criteria were easily satisfied due to the conservative
design of the interconnections at the initial stage, although this could lead to
non-optimal operation from a cost-benefit perspective.13

Deterministic reliability criteria are straightforward and easy to use, but they
have several shortcomings in the light of evolving power systems. An important

12According to the system operation guideline of the ENTSO-E, the N-1 criterion means
"the rule according to which elements remaining in operation within the TSO’s responsibility
area after a contingency from the contingency list must be capable of accommodating the
new operational situation without violating operational security limits" [87].

13Interconnections initially aimed at reducing risks in terms of short-term adequacy, while
keeping cross-border flows limited in normal operation.
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drawback of a deterministic reliability criterion is that uncertainty is not
appropriately considered. The probability and severity of outages of single
network components are not explicitly considered. Moreover, uncertainties
due to load and renewable power generation are completely ignored. Many
stochastic aspects are inherent to power systems due to internal and external
events. Firstly, outages are stochastic events, both in terms of their frequency
and duration. Events occur stochastically, e.g., uncontrolled vegetation can lead
to sudden short-circuits on overhead lines, power system components can fail in
an unpredictable manner, etc. Secondly, demand and generation are fluctuating
over time, resulting in uncertainties in operating point, both in real time and
during forecasting. The variability of (particularly renewable) generation is
linked to the weather conditions and influences the market behavior in the
system. Furthermore, cross-border interconnections are currently utilized based
on the interaction of different markets. The development of the European
electricity market has resulted in significantly increased power flows, but also
more variable flows.

2.5.3 Probabilistic Reliability Management

Probabilistic RMACs in operational planning take uncertainty into account in
a more appropriate way. Considered contingencies due to outages and forecast
errors are taken into account with their respective probability of occurrence.
They are determined using appropriate state-selection techniques, which can be
probability- or risk-based, [84] or based on a discarding principle [85].

Probabilistic RMACs enable the quantification of the reliability level, whereas
deterministic criteria are strictly binary, i.e., the system is reliable or not.
However, appropriate indicators should be selected to obtain an adequate
quantification. A challenge is that the practical meaning of the absolute
indicator values might not be very informative, because insufficient experience
exists so far. Moreover, different indicators might result in different decisions
to be taken [1]. Table 2.2 summarizes the advantages and challenges regarding
probabilistic RMACs compared to the shortcomings of the deterministic N-1
criterion.

Probabilistic approaches are already used in reliability calculations for power
system planning and development, e.g., to determine the generation reserve in
the system development phase. Some countries that use probabilistic reliability
criteria for planning are Australia [21], New Zealand [21] and the province
of British Columbia in Canada [19]. Surveys have shown that TSOs seldom
use probabilities in their short-term reliability management, except for some
TSOs that exclude very rare events from the contingency list or treat extreme
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Table 2.2: Advantages and challenges of probabilistic RMACs.

Advantages Challenges

- Uncertainties included
- Probability and severity of
contingencies considered in
decision-making process
- Quantified reliability level

- High number of states to consider
- Selection of appropriate indicators as
different indicators imply different
decisions
- No practical experience

weather events differently due to higher associated failure probabilities [22, 89].
The Icelandic TSO Landsnet has experimented with probabilistic reliability
assessment in the context of the GARPUR project and provided real-time risk
information to the system operators in the control room [55]. The need for good
reliability data has been identified as one of the barriers towards widespread
utilization of probabilistic assessments [21].

2.5.4 Short-term Reliability Management based on the N-1
Criterion

System operation in Continental Europe is based on four operational states that
are distinguished in the power system: normal, alert, emergency and blackout
[93, 94]. Sometimes a fifth restoration state is added.

Normal In this state, the power system is N-1 secure. For all credible
contingencies on the contingency list and taking into account the effect of
predefined remedial actions, all operational limits are satisfied.

Alert The power system is in the N secure state. All operational limits are
satisfied, but for at least one contingency on the contingency list, the N-1
security is non-compliant. Corrective actions need to be applied to return to
the normal, N-1 secure state. If no satisfactory, corrective actions are available,
the system will probably enter a less secure state once the operating conditions
change, e.g., due to a new contingency or the change of system variables, such
as load and generation.

Emergency Operational limits are violated and the system is strongly
disturbed. A timely intervention is needed to avoid a full or partial system
collapse. The defense plan is executed, consisting of a set of manual and
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automatic actions, to avoid system collapse and spreading of disturbances to
other parts of the own system and neighboring systems. The automatic actions,
often described in special and system protection schemes, aim at maintaining
the integrity of the backbone of the power system. If part of the system is
islanded or disconnected due to the emergency situation, restoration is required.

Blackout A blackout is an involuntary absence of voltage in a certain area
of the system or the complete system. This state can result from abnormal
variations of voltage or frequency occurring during the emergency state.

Restoration Restoration is the state in which the system is recovering from
an alert, emergency or blackout state. If the system is in the blackout state, the
objective is to re-energize the backbone of the transmission system as quickly as
possible to gradually reconnect generating units and load. Effective restoration
is required to minimize the downtime, the costs of the TSO and the interruption
costs.

These operational states represent the viability of the system in its current
operating modus [95]. The system operator makes decisions and eventually
undertakes control actions based on the current and expected state of the
system. In the normal state, system operators aim at meeting the standards
at a minimal cost, while making provisions for secure, future operation [95].
Control actions can be preventive, i.e., applied prior to the occurrence of a
contingency, or corrective, i.e., applied after the occurrence of a contingency.
Preventive actions come at a cost, even though no contingency might occur.
Corrective actions are predetermined to be activated immediately after the
occurrence of a contingency and only infer costs if a contingency actually occurs.
However, they imply an additional risk as they might not execute as expected,
resulting in insufficient time to take alternative actions. The latter is also
denoted as the uncertainty regarding the corrective control behavior. In the
alert and emergency state, actions aim at preventing further degeneration. The
cost of actions is of less concern in these states and the primary concern is to
restore the system in the normal state as quickly as possible.

The impact of contingencies might not be limited to the own control area due
to interconnections between systems. Moreover, different TSOs have a different
implementation of the N-1 reliability criterion. Therefore, communication and
data sharing between TSOs is of utmost importance. Surveys have shown that
TSOs are willing to share data among each other, but confidentiality is an
important issue for some TSOs [89].
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2.6 Conclusion

An adequate reliability level in power systems is crucial due to the criticality of
electricity supply for modern societies. Power system reliability is determined
by the system’s vulnerability, the threats the system is facing and the applied
reliability criterion. Reliability management aims at taking a sequence of
decisions under uncertainty to meet the applied reliability criterion, while
minimizing the socio-economic costs. An appropriate trade-off should be made
between actions at different, interlinked decision stages focussing on system
development, maintenance and asset management and operational planning
and real-time operation. Each of the decision stages is characterized by the
available flexibility and uncertainty in the system.

Nowadays, a deterministic N-1 criterion is applied in short-term reliability
management. The deterministic N-1 criterion is easy to use and straightforward
and has lead to satisfactory results in the past. However, evolutions in
power systems challenge currently-used deterministic reliability management
approaches and criteria. Deterministic RMACs do not appropriately consider
uncertainties in power systems. Their main focus is on providing sufficient
redundancy in the system as they favor preventive actions and do not take into
account post-contingency costs.

Probabilistic RMACs on the contrary take into account risks related to
uncertainties in a more appropriate way. They enable a trade-off between
reliability and interruption costs to minimize total system cost. Compared to a
few decades ago, system operators have more flexible devices at their disposal to
control power flows in short-term operational planning and real-time operation,
which enables more efficient operation. Probabilistic RMACs enable system
operators to exploit the potential of modern technologies and to re-assess the
trade-off between redundancy and flexibility at the different decision stages.
To convince power system stakeholders to move towards alternative RMACs,
evaluating and comparing different RMACs is crucial.





Chapter 3

Performance Metric for
Reliability Management

A large literature consisting of both scientific papers and technical reports exists
on quantitative indicators and indices that are used or proposed for use in power
system reliability management. However, the literature is not coherent and the
terminology is not unified. Moreover, an up-to-date overview and classification
of indicators does not exist. More than 15 years ago, Allan and Billinton [18]
made a review of existing approaches and measures to evaluate the quality and
performance of different power system sectors, such as generation, transmission
and distribution. Their discussion of indicators is limited to best practices in the
context of probabilistic reliability assessment in systems with more competition
and more stakeholders and does not take into account the increasing penetration
of RES in the system.

This chapter provides insight in the structure and characteristics of available
indicators and indices and how they can be used to represent the performance
of a reliability management approach. A classification and characterization of
indicators and indices is proposed to serve as a reference for indicator selection
and development. Furthermore, a multi-dimensional performance metric to
assess the performance of RMACs is proposed.

Section 3.1 clarifies the terminology used in the remainder of the chapter. Section
3.2 discusses characteristics of quantitative indicators and indices. Section
3.3 describes different classes of indicators and their characteristics. This
classification is based on a survey of technical reports of system operators and
coordinating bodies, such as NERC, ENTSO-E and CEER, as well as scientific
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literature. Section 3.4 proposes a ‘reliability management performance metric’
that defines the aspects determining performance of reliability management
approaches and criteria and enables the assessment of the multi-dimensional
performance. The quantitative and qualitative indicators used in this multi-
dimensional metric are described in Sections 3.5, 3.6 and 3.7. Section 3.8
concludes the chapter. An overview of indicators and indices proposed
in literature is provided in Appendix A. The described classification and
characterization is applied to this set of indicators. Based on this overview,
indicators still missing to fully represent performance of reliability management
are identified.

This chapter is partly based on the paper Review and Classification of Reliability
Indicators for Power Systems with a High Share of Renewable Energy Sources,
Heylen E., Deconinck G. and Van Hertem D. submitted to Renewable and
Sustainable Energy Reviews.14

3.1 Definitions

Literature on power system reliability does not make a clear distinction between
the terms measure, metric, index and indicator. A measure is defined as a
value quantified against a standard [96], whereas indicators are not related to a
standard. Several definitions of the term indicator exist. The term indicator
refers to an observable measure that provides insight into a concept that is
difficult to measure directly [97]. According to OECD/DAC15, an indicator
is "a quantitative or qualitative factor or variable that provides a simple and
reliable means to measure achievement or to reflect changes connected to an
intervention" [98]. According to the definition adopted by USAID16, an indicator
is "a quantitative or qualitative variable that provides reliable means to measure
a particular phenomenon or attribute" [99]. However, in the strictest sense, an
indicator does not measure. An indicator can be considered as an indication of
a measure.

An index is defined as a combination of related indicators that intend to
provide means for meaningful and systematic comparisons of performance
across programs that are similar in content and/or have the same goals and
objectives [100]. It can be denoted as a scaled composite variable that can be

14The first author is the main author of the paper. The contributions of the first author
include the literature survey of reliability-related indicators to identify a characterization and
classification of indicators and to make an overview of available indicators.

15OECD/DAC: Organisation for Economic Co-operation and Development/Development
Assistance Committee

16USAID: United States Agency for International Development
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considered as a kind of summary measure designed to capture some property
in a single number. An index can be considered as a composite statistic that
aggregates multiple indicators and makes it possible to rank and summarize
observations [101, 102].

Metrics help to put a variable in relation to one or more other dimensions
[96]. A metric is often used as a general term to describe the method used to
measure something, i.e. the resulting values obtained from measuring, as well
as a calculated or combined set of indices [103].

Table 3.1 summarizes the definitions.

Table 3.1: Summary of the terminology.

Term Definition

Measure Value quantified according to standard
Indicator Quantitative or qualitative indication of achievement

Index Composite statistic based on measures and indicators making it possible to
rank and summarize observations

Metric Set of measures, indicators or indices to evaluate a certain property

3.2 Characteristics of Indicators

A multitude of characteristics of indicators and indices (proposed to be) used
in reliability management can be distinguished. A unified characterization
facilitates the assessment of similarities and differences between indicators. This
enables the classification of indicators and indices.

3.2.1 Types of Indicators

Endrenyi distinguished four types of indicators to assess system malfunctioning
in a power system reliability context: probabilities, i.e., what is the chance
that the system is malfunctioning, frequencies, i.e., how often does the system
malfunction, mean durations, i.e., how long lasts the system malfunctioning on
average, and expectations of malfunctioning [104]. Replacing expectations
by magnitude results in a more generic characterization. The magnitude
of malfunctioning corresponds to the degree of violation of the boundary of
acceptable behavior or the magnitude of the consequences of malfunctioning.
To determine the proper functioning of a component or system, a definition
of satisfactory behavior is required. Based on this definition, the performance
of the system can be determined. Risk is an additional type of indicator,
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which is particularly of interest in the context of increasing uncertainties. Risk
indicators take into account the probability and severity, i.e., the magnitude of
the consequence, of malfunctioning. These different types of indicators can be
further subdivided based on different characteristics.

Hierarchical Levels

Traditionally, three hierarchical levels have been distinguished. In classical
power system reliability literature, hierarchical level I (HLI) focuses on the
generation facilities, whereas hierarchical level II (HLII) considers both the
generation and transmission facilities. Hierarchical level III (HLIII) covers
the combination of generation, transmission and distribution facilities [23].17
Indicators can be specific for a particular level or can be used at multiple levels.
Due to the increased penetration of RES and their distributed character, the
strict distinction between the three hierarchical levels diminished.

Measures

The main objective of power system reliability management is to obtain a
low frequency of inability to serve load with the required quality and a very
low frequency of experiencing spectacular system failures, such as blackouts
[23]. To achieve this, physical measures, such as voltage, frequency, loading of
components, stability and current, should be within limits. Cost-effectiveness
of reliability management also comes more to the foreground, which asks for
monetary measures to be monitored.

Type of the interruption

A distinction can be made between sustained interruptions and short or
momentary interruptions [105]. Especially HLIII indicators make a distinction
between types of interruptions based on their duration. Moreover, different
indicators can be calculated for planned and unplanned interruptions, which
is related to their advance notification [106]. The cost of energy not supplied
(CENS) regulation in Norway additionally considers the time of occurrence of
the interruption [106].

17HLIII studies in practice mainly focus on the distribution level to reduce the problem
size.
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Scope of the Indicators

Allan and Billinton distinguish between system indicators and load point
indicators [18]. They define system indicators as global indicators representing
the behavior of the overall system. System indicators are extremely valuable
in the context of global observations. Load point indicators on the contrary
focus at individual bulk supply points. They evaluate the impact of a certain
reliability decision on a particular bulk supply point. Allan and Billinton
explicitly mention the complementarity of both types of indicators.

Alternative terms to denote the scope of an indicator are zonal and local
indicators. Zonal indicators operate system wide, local indicators by contrast
focus on a smaller part of the system, such as a component18, a node or a
supply point. Zonal indicators need to be considered complementary to the
local values to provide an overall picture of system behavior [108].

Consumer- and System-Related Indicators

A distinction can be made between indicators that are consumer- and those
that are system-related. Consumer-related indicators focus on the impact of an
event on one or more consumers. Local consumer-related indicators represent
the performance of a particular consumer or consumers of a load point or region,
whereas zonal indicators consider all consumers in the system. System-related
indicators on the contrary quantify system-related concepts, such as voltage,
current and frequency. Local system indicators focus on parts of the system,
e.g., a single component or node in the system, whereas zonal system indicators
look at the overall system.

Mono-, Bi- and Multi-Parametric Indicators

Indicators can be classified as mono-parametric, bi-parametric and multi-
parametric indicators. Mono-parametric indicators employ a single statistical
parameter, whereas bi-parametric indicators are expressed by two statistical
parameters [109]. A frequency and duration indicator for instance gives
information on the average rate a specific state is encountered and the average

18A component is a device which performs a major operating function and which is regarded
as an entity for purposes of recording and analyzing data on outage occurrences, such as
a transformer, series capacitors or reactors etc. Components can consist of multiple sub-
components, which are a part or portion of a component which is relevant for quantifying
exposure to outage occurrences, or failures, or both, or for identifying the cause of an outage
occurrence or failure [107].
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residence time in a specific state [109]. Moreover, multi-parametric indicators,
i.e., expressed by more than two statistical parameters, can be distinguished.

Leading and Lagging Indicators

Lagging indicators are result-oriented, measure historical events, and tend to be
easier to interpret than leading indicators. Leading indicators precede events
and are more difficult to obtain. The objective of leading indicators is to
recognize and eliminate unreliable actions and at-risk conditions [110]. Leading
indicators tend to change before an activity and, as a consequence, can be used
as a predictor. They are also denoted as pro-active indicators [97]. Leading
indicators gain importance given the increasing uncertainty in power systems.
Leading and lagging indicators can also be denoted as ex-ante and ex-post
indicators respectively.

Deterministic and Probabilistic Indicators

Indicators can be deterministic or probabilistic in nature. Ex-post or lagging
indicators can generally be considered as deterministic. Leading or ex-ante
indicators can be deterministic or probabilistic.

Most deterministic indicators are lagging indicators used to measure the
historical performance of the power system. Some leading deterministic
indicators exist as well, which can be used as an indication for the future
performance of the system.

Probabilistic indicators are typically expectations, i.e., the average of a
probability distribution [111], which are used ex-ante to estimate the system’s
performance [112]. They capture uncertainty more adequately than deterministic
indicators as both severity and probability of events can be considered. This
makes them especially useful in systems with increasing uncertainties.

Activity and Outcome Indicators

A distinction can be made between activity and outcome indicators. Activity
indicators give information on the level of targeted activities to improve
reliability, whereas outcome indicators measure whether the targeted activity
has led to an improved reliability level [97].
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3.2.2 Type of Assessment

The reliability assessment to evaluate a particular indicator can be a short- or
long-term assessment. Short-term reliability assessment can be dynamic, pseudo-
dynamic or static [73, 74] and typically focuses on the composite generation
and transmission level (HLII). Long-term reliability assessment is more high
level and can focus on the generation level (HLI), the composite generation
and transmission level (HLII) or the distribution level (HLIII). The long-term
assessment is typically static in nature. Long-term assessments can span years
up to decades, whereas short-term assessments typically span seconds up to
hours.

3.2.3 Types of Indicator Values

Different types of indicator values can be distinguished, such as maximal or
minimal values, average/mean values, expected values, probability density
functions, instantaneous values, value at risk, conditional value at risk, etc. Also
the period over which the indicator is evaluated can differ. Annual, monthly,
daily, hourly or instantaneous indicators can be distinguished or an indicator can
focus on a particular period in the year, the worst period for instance [105]. The
type of indicator that can be obtained is also related to the type of assessment.
Moreover, a distinction can be made between annual and annualized indicators
[108].

3.3 Classification of Indicators and Their Charac-
teristics

Literature typically distinguishes adequacy, security and reliability indicators.
With the ongoing research on advanced probabilistic reliability management
approaches and criteria that aim at cost-effective reliability management, socio-
economic indicators gain importance. The focus of this section is to discuss
different classes of indicators and attributing characteristics to each of the
classes, which facilitates the classification and characterization of indicators.

3.3.1 Adequacy Indicators

Adequacy indicators represent the ability of an electric power system to supply
the aggregate electric power and energy required by the consumers, under steady-
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state conditions, with system component ratings not exceeded, bus voltages and
system frequency maintained within tolerances, taking into account planned and
unplanned system component outages [44]. The focus is on the consumers rather
than the system or individual components. Adequacy indicators are the result of
a steady-state assessment and are physical rather than socio-economic in nature.
Adequacy indicators exist for the three hierarchical levels as outlined in Section
3.2.1, i.e., generation (HLI), composite generation and transmission (HLII) and
composite generation, transmission and distribution (HLIII) [18, 109]. They can
be lagging and deterministic or leading and probabilistic outcome indicators.
The indicators are of four types, i.e., magnitude, probability, frequency and
duration.

3.3.2 Security Indicators

Security indicators show the ability of the system to be operated in such a
way that credible events do not give rise to loss of load, operation of system
components beyond their ratings, bus voltages or system frequency outside
tolerances, instability, voltage collapse, or cascading [44]. Security indicators
focus on the composite generation and transmission system (HLII). They are
system rather than consumer related. Security indicators are determined based
on the results of a dynamic, pseudo-dynamic or steady-state security assessment,
depending on whether transients after the disturbance are neglected or not [71].
Steady-state security can be considered as a first-order approximation of the
dynamic power system state [73]. Alternatively, pseudo-dynamic evaluation
techniques using sequential steady-state evaluation to assess the impact at
several post-contingency stages exist [74]. Physical indicators resulting from the
security assessment are compared with security limits to determine whether the
system operates within security limits and if not, to determine the magnitude
of the security limit violation. Security indicators can be deterministic, leading
or lagging, or probabilistic, leading outcome indicators. They can be of all
five types, i.e., risk, magnitude, probability, frequency and duration. Risk-
based security indicators are especially suitable in a context of increasing RES
penetration.

3.3.3 Socio-Economic Indicators

Probabilistic RMACs based on socio-economic principles incorporate socio-
economic indicators in their decision making [47, 42]. Socio-economic indicators
represent different types of costs, benefits or surpluses of individual power
system stakeholders or the aggregated system. Actors impacted by power system
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Table 3.2: Overview of costs and benefits of and socio-economic interactions
between power system stakeholders resulting in an overall system balance [80].

Stakeholders’ balances System balance

Consumer balance Producer balance System operator
(SO) balance

Sy
st
em

co
st
s + Consumer

benefits
+ Consumer
benefits

- Interruption costs - Interruption costs

- Variable costs - Variable producer
costs

- Fixed costs - Fixed producer
costs

- Variable costs - Variable SO costs
- Fixed costs - Fixed SO costs

C
os
t
tr
an

sf
er
s

+ Interruption
compensation

- Interruption
compensation

+ Demand
response payment

- Demand response
payment

- Transmission
tariff

+ Transmission
tariff

- Electricity
payment

+ Electricity
payment
- Capacity fee + Capacity fee
+ Reserve payment - Reserve payment
+ Congestion
payment

- Congestion
payment

reliability are producers, system operators, end-consumers, the government and
the environment, all facing different types of costs and benefits. A high-level
representation of socio-economic interactions between consumers, producers and
system operators is given in Table 3.2. Each of these stakeholders has its own
balance, while the interactions between them result in an overall system balance.
The upper and lower part of the table make a distinction between respectively
system costs and cost transfers. System costs and benefits have resp. a negative
and positive effect on socio-economic surplus. Cost transfers appear as costs
to a certain stakeholder, while being a payment, and thus benefit, to another
stakeholder. Cost transfers do not affect the socio-economic surplus.

Socio-economic indicators can be deterministic or probabilistic. Both socio-
economic activity and outcome indicators exist. Socio-economic indicators
mainly represent a risk or a magnitude and can focus on the system, the
consumer or both at the same time. They can be the result of a long-term or a
short-term assessment.
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3.3.4 Reliability Indices

The definition of reliability indices differs between different sources. In [44],
reliability indices are defined as indications of the probability that an item or
system can perform as required, without failure, for a given time interval19,
under given conditions.20 According to [44], reliability indices are restricted
to durations, frequencies and probabilities. By contrast, reliability indices are
in some cases also denoted as reliability performance indices. NERC defines
reliability as "an electricity service level or the degree of performance of the
bulk power system defined by accepted standards and other public criteria"
[110]. In this context, reliability indices can be considered as kind of summary
measures to represent the system performance with regards to the reliability
criterion or reliability standards.

Reliability depends on the one hand on how the system is loaded in comparison
to its limits and on the other hand on the reliability of each of its individual
components. The calculation of reliability indices is based on adequacy, security
and socio-economic indicators and depends on the applied reliability criterion.
Up till now, reliability management was mainly based on physical indicators,
but the potential of reliability management based on socio-economic principles
is recognized in scientific literature [13]. Reliability indices can focus on the
consumers and/or the system and can be local or zonal indices. Moreover,
all hierarchical levels can be represented in integrated indices, which can
combine adequacy, security and socio-economic indicators of different types
with appropriate weighing factors, as introduced by NERC in its Integrated
Reliability Index (IRI) [110].21

3.3.5 Other Types of Indicators

Hofmann et al. [68] formulate high-level indicators for monitoring vulnerability.
A distinction needs to be made between indicators for threats, susceptibility,
coping capacity and criticality.22 Indicators for threats and susceptibility are
divided in classes: threats due to natural hazard, human threats and threats
due to operational conditions [68].

19The time interval duration may be expressed in units appropriate to the item concerned,
e.g., calendar time, operating cycles, distance run, etc., and the units should always be clearly
stated [44].

20Given conditions include aspects that affect reliability, such as mode of operation,
environmental conditions and maintenance, where applicable [44].

21The integrated risk index is discussed in more detail in Appendix A.
22The criticality of an infrastructure represents the dependency of the society on that

infrastructure [113].
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3.3.6 Summary

A summary of the general characteristics of the different classes of indicators
is given in Table 3.3. The four classes contain deterministic and probabilistic
indicators and incorporate local and zonal indicators.

The distinction between adequacy indicators focusing on the composite
generation and transmission system and security indicators resulting from
a steady-state analysis and focusing on loss of load is not that clear from their
definition. This distinction depends on the type of assessment. Some of the
indicators denoted in literature as security indicators can also be classified as
HLII adequacy indicators. This is indicated by (x) in Table 3.3. Multiple ‘x’
in the same section of Table 3.3 indicate that different indicators of that class
have different characteristics related to that section. It does not mean that all
characteristics need to be present at the same time.

Table 3.3: Characteristics of different classes of indicators.

Assessment Measure System vs consumer Hierarchical level
Indicators (1) (2) (3) (4) (5) (6) (7) (8) (9)

Adequacy o x x o o x x x x
Security x o x o x (x) o x o
Socio-economic x x o x x x o x x
Reliability x x x x x x x x x

(1) Short term, (2) Long term, (3) Physical, (4) Socio-economic, (5) System,
(6) Consumer, (7) HLI, (8) HLII, (9) HLIII
o = not applicable, x = can be applicable

An overview and classification of indicators and indices proposed in technical
and scientific literature is provided in Appendix A. Based on this overview,
indicators or indices that are still missing to characterize the different aspects
determining the performance of RMACs are identified.

3.4 Reliability Management Performance Metric

The performance of power system reliability criteria is multi-faceted and several
opposing objectives need to be considered. To adopt an RMAC, its economic,
technical and social acceptability, applicability and practicality are crucial.

Technical acceptability represents the satisfaction of operational limits. These
limits are typically verified using physical security indicators. Nowadays, mainly
lagging, deterministic indicators are used, which are easy to obtain. NERC
and ENTSO-E have defined metrics in terms of lagging deterministic indicators
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to verify the technical performance [66, 87].23 However, leading, probabilistic,
physical indicators, such as the ones proposed in [41, 45, 114, 115] and the
Severity Risk Index (SRI) of NERC [116], are proposed in the literature since
the beginning of this century. They enable pro-active behavior in systems with
increasing uncertainty as a result of increasing RES penetration.

Economic acceptability evaluates the level of social surplus resulting from
the RMAC. Social surplus can be considered as the ideal index for reliability
management, but it is not easy to use in practical reliability assessment and
TSO decision making. Not all data needed to evaluate socio-economic surplus
are available at the moment of decision making and some of the data are difficult
to obtain. The value of reliability from the consumer perspective is for instance
hard to determine in practice, because the societal value of electric service
reliability is very complex and multi-faceted [117]. Total system cost is used as
an alternative for social surplus, as it is a good approximation under certain
assumptions [80].

Social acceptability is concerned about how the reliability level is perceived
by the end-consumers. So far, a formal definition of social acceptability in a
power system reliability context does not exist. A definition in an ecosystem
management context states: Social acceptability results from a judgmental
process by which individuals compare the perceived reality with its known
alternatives; and decide whether the ‘real’ condition is superior, or sufficiently
similar, to the most favorable alternative condition. If the existing condition is
not judged to be sufficient, the individual will initiate behavior, eventually within
a constituency group, that is believed likely to shift conditions toward a more
favorable alternative [118]. In a power system reliability context, judgement can
be made in terms of the absolute level of unreliability and interruption cost, but
also in terms of the distribution of unreliability among consumers. The absolute
level of reliability can be represented by adequacy indicators, such as energy not
supplied, interruption duration or interruption frequency. The distribution of
unreliability among consumers determines the inequality and inequity between
consumers and whether consumers perceive to be treated fairly. Indices that
quantify the inequality or inequity in terms of the distribution of unreliability
among consumers, nodes or consumer groups did not exist so far, but have been
developed in the context of this work.

Applicability is determined by the data requirements of the RMAC. It needs to
be assessed whether the required data are available or can be collected, whether
they are sufficiently accurate and whether they can be used or are protected
due to confidentiality issues. Practicality of an RMAC is determined by its
ease of use, especially compared to the currently used N-1 approach. Table 3.4

23The metrics of NERC and ENTSO-E are discussed in more detail in Appendix A.
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gives an overview of the reliability management performance metric. Technical
acceptability is ensured by the operational limits considered in the RMAC.
Sections 3.5 - 3.7 elaborate on the other aspects of the performance metric.

Table 3.4: Reliability management performance metric.

Technical Economic Social

Acceptability Operational limits Total cost/efficiency

Equity
Equality
Reliability

Interruption cost

Applicability

Data integrity and
availability

e.g., accuracy of
measurement

devices,
time to collect the

data

Data availability
e.g., Cost of

collecting the data

Confidentiality
e.g., Data sharing

Practicality/
Ease of use

Objective function
Number of states

Amount of information and number of reliability indicators

3.5 Economic and Social Acceptability

Economic and social acceptability of a reliability management approach and
criterion are in this work proposed to be verified based on three quantitative
indicators: total cost of system operation, the amount of load curtailment in
the system and inequality and inequity indices evaluating the distribution of
reliability between consumers, nodes or consumer groups.

3.5.1 Total System Cost

Total system cost is the sum of the cost of preventive actions, the cost of
corrective actions and interruption costs. Interruption costs equal the amount of
load curtailed times the value of lost load (VOLL) and represent the consequences
of an interruption for the consumers. The total cost (TC) at a certain time t
and real-time state rt is equal to:

TC(rt, t) = Cprev(aprev) + Ccorr(acorrrt ) +
∑
j∈J

vj · P curtj,rt (3.1)

where Cprev(aprev) and Ccorr(acorrrt ) are resp. the cost of preventive and
corrective actions, aprev and acorrrt are vectors of resp. preventive and corrective
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actions, vj is the value of lost load of consumer j, P curtj,rt is the load curtailment
of consumer j in real-time state rt and J is the set of consumers in the system.
Efficiency is defined in this context in terms of potential cost savings of an
RMAC compared to the benchmark.

3.5.2 Load Curtailment in the System

The amount of load curtailment in the system, aggregated, per node or per
consumer, is here expressed in terms of Relative Load Curtailment (RLC).
Relative load curtailment is expressed as the amount of load curtailment rescaled
to an equivalent number of minutes in a year:

RLC =
(
P curt

P load

)
· 8760 · 60 [min/year] (3.2)

Where P load is the total demand and P curt is the curtailed load. The indicator
RLC is thus an indicator of the absolute level of unreliability in the system.

3.5.3 Inequality in terms of Reliability

Different RMACs imply different reliability decisions [63]. Reliability decisions
do not affect all consumers equally. Some are more affected than others,
depending on their location and characteristics. If consumers feel that their
reliability level is unfairly low compared to other consumers, they could complain
and oppose those decisions that lower their reliability level. Therefore, in
addition to measuring the change in costs and the change of the overall reliability
level, this dissertation argues that power system decision makers should also
measure the distribution of unreliability among consumers. Indices to quantify
inequality and inequity are developed based on the Gini index, which is used in
an economic context to quantify income inequality amongst others. Chapter 6
presents the indices to quantify inequality and inequity in terms of reliability in
a single value.

3.6 Data Requirements of RMACs

Appropriate data are important for decent reliability management. Data
requirements determine the applicability of RMACs and are a qualitative aspect
to be considered in the performance evaluation of an RMAC. The performance of
reliability management approaches and criteria can be sensitive to the accuracy
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of the provided data and required data are not necessarily available or easy to
collect. Data requirements of an RMAC are hard to evaluate quantitatively
and are assessed by a qualitative indicator based on a scoring system.

3.6.1 Additional Data Requirements in Probabilistic RMACs

Probabilistic reliability management approaches and criteria have additional
data requirements compared to their deterministic counterparts. Probabilistic
approaches explicitly consider the risk related to power system uncertainties and
determine decisions based on a trade-off between reliability and interruption
costs. Data are required that appropriately represent uncertainties and costs in
the decision-making behavior.

An overview of the data requirements of short-term probabilistic RMACs is
given in Table 3.5. Short-term reliability management is influenced by system
component and exogenous factors. Technical data are required about system
components, such as overhead lines, cables, transformers etc., and exogenous
factors, such as demand and generation. These should be complemented in
probabilistic approaches with availability data of system components and a
quantification of uncertainty regarding exogenous factors, such as demand,
generation and weather conditions. Moreover, uncertainty regarding corrective
control behavior, i.e., whether the planned corrective control action is executed
as expected, can be considered in probabilistic reliability management. The
trade-off between reliability and interruption costs made in fully probabilistic
RMACs also requires cost data regarding generation, demand and transmission.

Uncertainty

Three types of parametric uncertainty are typically considered in short-term
probabilistic RMACs: (i) Related to the availability of system components,
(ii) related to load and (RES) generation and (iii) related to the reliability of
corrective actions.24

i. Availability of system components is determined by their reliability and
maintainability. Reliability is defined as the ability to perform as required,
without failure, for a given time interval, under given conditions [44]. The
reliability of system components is characterized by their failure rate.

24Besides the parametric uncertainty, other types of uncertainty are parameter, stochastic,
algorithmic, structural, measurement, multi-model and decision uncertainty [119].
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Table 3.5: Data requirements for probabilistic RMACs.

System components Exogenous Cost data

Technical

OHLa
Cables

Transformers
SPSb

Demand
Generation Generation


Reserves
Redispatch
Marginal cost
. . .

Availability
Breakers, Switches

Substations
VAR compensators

Demand

{
VOLL
Electricity price
. . .

Uncertainty Corrective control
behavior

Demand
Generation
Weather

Transmission


Congestion
Switching
Tap changing
Losses
. . .

a Overhead lines
b Special protection schemes

Maintainability is defined as the probability of performing a successful
repair action within a given time. It measures the ease and speed with
which a system can be restored to operational status after a failure occurs
[120]. Failure and repair rates are highly impacted by several factors:
climate and weather conditions, human behavior, component quality and
age, maintenance, replacement and repair policy and quality, loading level,
geographical factors and voltage level [121].

ii. Operational planning decisions are based on forecasts of load and RES
generation, which are sensitive to forecast errors. Uncertainty regarding
load and RES realizations can be represented by a multivariate probability
density function incorporating the correlations between these parameters.
The uncertainty of short-term wind power generation Pwind for a
given forecast Pwind,∗ is given by the probability density function
ΠPwind,∗(Pwind) [122]. This Probability Density Function (pdf) changes
with the range of the wind farm power output. Moreover, although wind
speed prediction errors can be assumed to be Gaussian, the pdfs of the
forecast errors related to the wind power output are not Gaussian. A
reasonable assumption for the distribution of the forecast errors of wind
power outputs is a beta pdf, due to the bounded nature of the power
produced by a wind farm.25 The mean of the distribution is the forecast
value, whereas the standard deviation depends on the level of power
injected compared to the rated power of the wind farm. This behavior can

25Alternatively, the pdf can be estimated based on historical data using non-parametric
approaches.
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be approximated using a quadratic curve [122]. The standard deviation is
thus a function of the normalized forecast value Pwind,∗nom as shown in Fig.
3.1.
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Figure 3.1: Relation between the normalized standard deviation and the
normalized forecast value.

Forecast uncertainty of demand can be represented as a multivariate
normal distribution with the mean equal to the forecast value and an
appropriate coefficient of variation, which is typically smaller than 10%
[122]. Correlation between the forecast errors of demand at different
nodes in the system and between different wind farms are modeled using
a correlation matrix [122], rank correlation or copulas [123].
Uncertainty related to forecast errors is modeled in probabilistic reliability
management by considering discrete realizations of forecast errors [57]
or using probabilistic constraints [58, 124] in a stochastic programming
approach.

iii. Probabilistic reliability management enables a trade-off between preventive
and corrective actions, i.e., taking actions to make the system secure ahead
of real time with the risk of having unnecessary costs if no contingency
occurs versus preparing actions to take at the time a contingency occurs.
The latter is risky in the sense that the prepared action might not work as
planned, leaving less time and flexibility to come up with an alternative
action and possibly more severe consequences. This possible failure of
corrective actions can be considered in probabilistic reliability management
approaches. However, to do this correctly, probabilities of failure of
the different corrective actions that can be prepared are needed. The
probabilities of failure of corrective actions depend on several exogenous
factors.
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Cost

Where deterministic reliability management approaches favor preventive actions,
probabilistic RMACs enable a trade-off between preventive, corrective and
curtailment actions [57]. The cost of corrective actions is the aggregated cost
of all actions that are taken in a certain scenario, consisting for instance of
generation redispatch, PST tap changing, branch and busbar switching, VAR
compensation, etc. Assigning a cost to each of these actions is crucial to improve
the solvability of the optimization problem.

Besides the cost of corrective actions, interruption costs should be modeled,
which depend on the value of lost load of the consumers. VOLL is a parameter
representing the cost of unserved electricity and depends on several exogenous
factors, such as interruption time, type of interrupted consumers, interruption
duration, weather conditions, number of consumers affected, current reliability
level, advance notification and available mitigating measures.26

3.6.2 Potential Issues with Data

Besides the requirement of additional data in probabilistic RMACs, there might
be some data related issues in terms of availability, integrity and confidentiality
of the data.

Availability

Required data are not necessarily available at the moment of decision making
and it might be time consuming or costly to collect them. All these aspects
make that data might not be readily available to be used in an alternative
probabilistic approach. Some years might pass by before adequate data are
collected. An example of data that are not readily available nowadays are
probabilities of failure of corrective actions. Collecting failure data is in general
time consuming due to the low frequency of failure of system components.

Integrity

Accuracy of the collected data affects the performance of probabilistic RMACs.
Due to the low frequency of failure and the dependence of failure probabilities
on several exogenous factors (e.g., the failure rate of breakers depends on age,

26A more in depth discussion of the impact of VOLL and its level of detail on the performance
of RMACs is given in Chapter 7.
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number of operations, brand, type, installation, etc.), it is hard to determine
exact failure probabilities to use in probabilistic RMACs. Also, the cost of
corrective actions is hard to estimate, especially in severe cases, such as in
scenarios with cascading and stability issues [57]. The different cost terms are
sensitive to several exogenous factors and need to be estimated if they are not
known exactly, which typically leaves room for discussion. Applying ‘wrong’
probabilities and/or costs, will result in suboptimal decisions.

Confidentiality

Confidentiality issues are related to sharing data with other stakeholders. It
might be required to share data with market players or with neighboring
TSOs to handle cross-border security issues. Confidential data will be treated
correspondingly, which might challenge the decision making. Confidentiality
issues can also lead to delays in making the data available for decision making.

Moreover, probabilistic RMACs enable the exploitation of demand response
and reliability-based choices of electricity consumption. However, this comes
at the cost of reduced predictability of the demand profile. Privacy issues
come into play when collecting consumer-related data in the context of demand
response or to determine more exact values of lost load. Although a broad legal
framework on privacy and data security exists at several policy levels, sector
specific rules on confidentiality and data handling and security in the context
of demand response for residential consumers are still lacking [125].

3.7 Ease-of-use

The ease-of-use and transparency of the currently used N-1 criterion is one of
the reasons why TSOs are not eager to change their reliability management.
Probabilistic approaches are typically risk-based, taking into account justifiable
probabilities and severities of the considered operating states. Deterministic
approaches, on the contrary, simplify the situation by not taking into account
probabilities and consequences of contingencies. Moreover, ease-of-use is
influenced by the number of operating states to consider. Given the increased
uncertainty in power systems due to the increased penetration of renewable
energy sources and market forces, it might be beneficial to consider additional
operating states in the decision-making process. However, this makes the
decision-making process more complex. The operator might also need to
assess more and different information to make a trade-off between reliability
and interruption cost that satisfies the prescribed reliability criterion. This
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comprises considering more and different indicators, such as socio-economic
indicators or leading, risk-based, physical indicators.

Ease-of-use of an RMAC is hard to evaluate quantitatively and is typically
assessed by a qualitative indicator based on a scoring system. The different
aspects determining ease-of-use, i.e., whether the approach is deterministic
or probabilistic, the number of system states to consider and the amount of
information to process, can be assessed separately.

3.8 Conclusion

A performance metric of short-term RMACs comprises their economic, technical
and social acceptability, applicability and practicality. Applicability and
practicality should be represented in terms of qualitative indicators that evaluate
the data requirements and ease-of-use of the RMAC. Literature on quantitative
indicators that can be used to represent acceptability is not coherent nor
unified. Four main classes of indicators can be distinguished each with their own
characteristics: adequacy, security, socio-economic and reliability indicators.

Technical acceptability is ensured by constraints in terms of physical security
indicators applied in reliability management. So far, coordinating organizations,
such as ENTSO-E and NERC, mainly consider security indicators that are
deterministic, lagging, physical indicators, which enable an ex-post security
assessment of the system. However, leading, probabilistic security indicators
become more important. They enable pro-active behavior in systems with
increasing uncertainty.

Social and economic acceptability should be verified based on socio-economic
indicators, such as total system cost, and reliability indicators, such as the
level of load curtailment. Besides the absolute reliability level, equality or
equity in terms of power system reliability should be assessed to verify whether
consumers perceive to be treated fairly. So far, no index is reported in the
existing literature on power system reliability to quantify this aspect.



Chapter 4

Quantification Framework for
Evaluating and Comparing
Performance of Short-Term
RMACs

This chapter presents a generic quantification framework for evaluating and
comparing performance of power system reliability management approaches
and criteria. The main contribution is the modular design of a framework to
quantify the performance of various RMACs by evaluating both the real-time
system state as well as the reliability management process. This requires a
generic way of combining various aspects of power system operation, including
market clearing, determination of operational planning (OP) decisions and
taking real-time (RT) actions. The framework is easy to expand and the level
of detail can be increased or reduced in a transparent way. The framework is
implemented using MATLAB and AMPL for testing purposes [126]. Due to
its modular and generic design, modules of the platform can be substituted by
existing tools or more advanced implementations with similar functionality.

A large-scale implementation of the quantification framework based on the
presented theoretical design can be used to guide the regulator and transmission
system operators towards cost-effective reliability criteria. The framework can
help them making a trade-off between optimality of social surplus, practicality of
reliability management and social acceptance. Possible changes in performance
of using alternative reliability criteria can be quantified on stakeholder level
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and on system level. Another important feature of the framework is the tuning
of parameters of reliability criteria.

The main focus of this chapter is on the theoretical background of the
quantification framework for evaluating and comparing performance of power
system reliability management approaches and criteria. Especially the design
of the module to simulate the short-term decision-making process of TSOs is
discussed in this chapter. An overview of the framework with its possibilities
and its objectives as well as possible applications are described in Section 4.1.
Section 4.2 explains the various modules, while the implementation of the
different modules used in the case studies discussed in later chapters is given in
Section 4.3. Finally, Section 4.4 concludes the chapter.

Parts of this chapter are published in ’Framework for evaluating and comparing
performance of power system reliability criteria, Heylen E., Labeeuw W.,
Deconinck G. and Van Hertem D., IEEE Transactions on Power Systems,
Vol. 31 No. 3, pp 5153–5162, Nov 2016.27 The link with the design of the
GARPUR Quantification Platform (GQP) and the presented framework is
explained in Appendix B.

4.1 Overview and Objectives of the Framework

Evaluating and comparing performance of power system reliability management
approaches and criteria requires three main tasks:

1. Simulation of the decision-making process according to a particular RMAC,
including evaluation of possible candidate decisions,

2. Quantifying performance of various RMACs in terms of reliability and
socio-economic indicators, both at system level and stakeholder level,

3. Comparing performance of various RMACs.

The relationships between these three tasks in the quantification framework is
shown in Fig. 4.1. Firstly, a RMAC is selected from a list of candidate RMACs.
The reliability criterion is satisfied by taking appropriate reliability decisions.
Resulting actions lead to a final operational state of the power system, which
is evaluated together with the actions taken. To enable benchmarking, this
process is repeated with identical load, generator and grid data, but for a known

27The first author is the main author of the paper. The contributions of the first author
include the development of the quantification framework and the modeling and analysis of
the case study described in the paper.
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RMAC, e.g,. based on the N-1 criterion. The post-processing stage compares
results for various assumptions and RMACs. Results of the comparison can be
used to evaluate the relative performance of RMACs and to tune parameters of
RMACs, such as risk level for instance.

Candidate reliability manage-

ment approaches and criteria

Load data

Grid data

Generator

data

Select reliability management

approach and criterion

Simulation module:

Decision-making

process

Evaluation module:

Performance

quantification

System

state

Actions

Comparison

Performance indicators

Figure 4.1: Overview of the quantification framework for evaluating and
comparing performance of power system reliability management approaches
and criteria [127].

4.2 Simulation of TSO Decision-Making Processes

The framework presented focuses on the short-term decision-making process of
the transmission system operator, i.e., day ahead (D-1) up to real time (RT).
The decision-making process consists of two stages:

• Operational planning stage or scheduling

• (Near) real-time operation stage

A challenge of the short-term operational planning and real-time operation is
that the decision-making process consists of multiple stages that are interlinked
with external systems, such as load and generation, as shown in Fig. 4.2 for
D-2, D-1 and real-time reliability management. These external systems are
controlled by external actors and are out of the control of the system operator.

Scheduled generation commitments at the different nodes in the system are
obtained from the day-ahead market clearing. In case of a copper plate day-
ahead market, security constraints and power system limits are not taken into
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External actors

TSO timeline

D-2 forecast

Capacity

Market bids

Preventive actions

Market clearing

Changes

Corrective

actions

Coordination

D2CF

Coordination

DACF

Coordination

IDCF

D-2 D-1 Now

D-2 Congestion Forecasts (D2CF)
Day-Ahead Congestion Forecasts (DACF)
Intra-Day Congestion Forecasts (IDCF)

Figure 4.2: TSO’s decision-making process of short-term reliability management
influenced by decision making of external actors.

account in the market clearing. This might require planning of actions, such as
redispatch, phase-shifting transformer tap changing or topological changes, to
satisfy the reliability criterion and the system limits. Scheduling of these actions
is done in the operational planning stage, considering the unit commitment
schedule resulting from the market clearing process based on forecasted load and
generation and the reliability criterion. Measures taken during the operational
planning stage are called preventive actions, which are taken before real-time
to achieve security and improve the ability to withstand the possible effects of
potential contingencies [128]. Moreover, corrective actions can be prepared for
the set of credible contingencies, which are applied if one of the contingencies
occurs in real time.

The operational planning stage is based on expected system states that might
differ from the real-time system state. Therefore, a final decision stage based
on the real-time realizations of demand, generation capacity and outages needs
to be included. Outcomes of this real-time decision stage are called corrective
actions, needed in real-time to satisfy the applied reliability criterion and meet
operational limits.

Links between the two decision stages and the various modules in the
implementation are shown in Fig. 4.3. The ‘IN’-block combines modules
delivering input for the quantitative simulation module. The ‘OUT’-block
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contains outputs of the quantitative simulation module. Following subsections
describe the modules.

Reliability 
criteria

Select criterion

External systems

Market
clearing

Candidate 
decisions

Transmission
system

Operational 
planning

Real-time
operation

Contingencies

Constraints
Objective function

Constraints+
Objective function

Available actions
Cost of actions

Available actions
Cost of actions

Forecast of
Load + generation

Real-time
Load+generation

Failure probabilities
Grid information

Real-time outages
Grid information

Forecast of
load+generation

Grid 
information

Generation
schedule

OP
actions
taken

RT
actions
taken

RT
system
state

OPRT

Cost of actions

OPRT

Quantitative simulation

IN

OUT

Interactions related to operational planning

Interactions related to real-time operation

Optional interaction

Figure 4.3: Overview of the simulation module together with its outputs and
modules serving the inputs. ‘RT’ and ‘OP’ refer to data of a particular module
regarding real-time operation and operational planning respectively.

4.2.1 External Systems

The ‘external systems’-module contains systems over which the TSO has limited
control:

• Generation, of which the module contains forecast and real-time generation
capacity, failure and repair rates, marginal costs of generation, capacity
available for reserves, cost of reserve provision and redispatch cost;

• Load, of which the module contains forecast and real-time demand in the
system, value of lost load;
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• Market, of which the module contains the type of the market, i.e.,
constrained market or copper plate market;28

• Weather, of which the module contains forecast and real-time values of
wind speed, wind direction, solar power, temperature at different points
in the system, etc.

Spatio-temporal correlation in meteorological data and load data can be included
using correlation matrices. Impact factors of weather parameters on operational
limits, e.g., dynamic line rating, and reliability data, e.g., failure rates, can also
be provided by this module.

All these external systems are interdependent and serve as an input for the
TSO decision-making processes of operational planning and real-time operation.
The level of detail associated with the external systems module determines to a
large extent the data requirements of the framework.

4.2.2 Transmission System

The ‘transmission system’-module contains parameters related to the grid and
its components:

• Topology of the grid, i.e., connections between the nodes, location of load
and generation, location of flexible devices, switchgear, etc.

• Characteristics of system components, i.e., operational limits of lines and
flexible devices, settings of flexible devices, impedance of lines, status of
components, etc.

• Reliability data of system components, i.e., failure and repair rates of
lines and flexible devices, etc.

Reliability data and characteristics of system components are in practice
influenced by weather conditions as well as decisions taken in earlier time
horizons, such as maintenance actions influencing the failure rate of components.

Grid information coming from the ‘transmission system’-module is used to
model the base case system. Additional cases of credible system states that
might need to be considered simultaneously in the quantitative simulation of
the decision-making process according to a particular reliability criterion are
added to this model. Furthermore, the ‘transmission system’-module provides

28This work only takes the day-ahead market explicitly into account.
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operational limits of system components that are considered as constraints in
the quantitative simulation.

4.2.3 Contingencies

The ‘contingencies’-module is related to the unexpected failure of system
components. Failure of system components can be caused by internal or external
factors such as [129]:

• Internal factors

– Aging
– Overloading
– Switching cycles
– Maintenance and repair policy

• External factors

– Extreme weather
– Vegetation and wildlife
– Theft and vandalism
– Damaging cables or touching lines for instance during construction

works

The ‘contingencies’-module gets failure and repair rates of system components
as an input from the ‘transmission system’-module and serves three purposes:

1. Determination of the probability of occurrence of various states of a
particular system component.

2. Determination of the probability of an outage of a particular (combination
of) system component(s)

3. Contingency selection

Reliability over the lifetime of a system component is typically modeled using
a ‘bathtub curve’, consisting of three main stages, as shown in Fig. 4.4. The
stage of early failures, sometimes also denoted as the infant mortality or burn-in
phase, represents a decreasing failure rate, because defective components are
identified and discarded and handling and installation errors are surmounted.
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The second stage of random failures has a constant failure rate. The third stage
of wear-out failure has an increasing failure rate due to aging and wear.29

t

λ(t)

Infant
mortality

Constant failure rate Wear out

Figure 4.4: Bathtub curve to model reliability over the lifetime of a system
component.

The bathtub curve is sometimes simplified by assuming a constant failure rate
over the whole lifetime of a component. If also the repair rate is considered
to be constant, this results in exponential distributions of time-to-failure and
time-to-repair, which satisfy the conditions of a Markov process. However, due
to non-exponentially distributed time-to-repair, systems are in general non-
Markovian. Moreover, bad weather conditions or bad maintenance might result
in non-constant failure rates. This requires methods of supplementary variables,
device of stages, semi-Markov processes [132] or simulation techniques to be
applied. However, if assumptions of exponentially distributed time-to-failure
and time-to-repair do not imply significant differences, approximate methods,
such as a Markov process, may be used to determine the probability to find the
component in a failure state [104].

The probability of occurrence of an outage of a particular (combination of)
system component(s) can be directly used in the objective function specified
by the RMAC to weigh outcomes for various expected system states in the
decision-making process. Furthermore, probabilities are needed in analytical
evaluation techniques to weigh the performance of a particular outcome of the
decision-making process in the overall performance of the RMAC. To reduce
the computational burden of the analytical evaluation techniques, appropriate
contingency selection methods can be applied [132, 133, 134].

29Although the bathtub curve is widely mentioned in literature, its application to
manufactured products is questioned [130]. Alternatives are presented such as for instance a
‘roller-coaster’ curve [131].
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The probabilities can also be used to sample the status of various transmission
system components according to their availability, resulting in time series of the
status of all components. These samples are useful in Monte Carlo simulations,
which can be applied to evaluate the performance of a particular RMAC.

4.2.4 Candidate Decisions

The time horizon determines the candidate reliability decisions of a transmission
system operator. In the short-term horizon from D-1 up to real time, candidate
decisions differ between the operational planning stage and the real-time
operation stage. An overview of possible candidate decisions is given in Table
4.1.30 Candidate decisions available in real time can also be considered in the
decision-making process of operational planning as they serve as additional
flexibility that is still available in real time. However, it depends on the applied
type of RMAC whether this is allowed.

Table 4.1: Overview of possible candidate decisions in operational planning and
real-time operation.

Real-time operation Operational planning

No action No action
Generation redispatch Contracting reserves
Load curtailment Contracting flexibility
Bus bar and line switching Generation rescheduling
Transformer tap changing + Actions real-time operation

The ‘candidate decisions’-module provides constraints and cost functions
in parametric form for the simulation of the decision stages. Values for
the parameters in these functions come from the ‘external systems’- and
‘transmission system’-modules.

4.2.5 Reliability Criteria

Outputs of the ‘reliability criteria’-module are constraints that need to be
satisfied and the objective function according to which the reliability needs to be
managed, both in parametric form. Constraints posed by the reliability criterion
consist of limits on reliability indicators, such as expected load curtailment,
as well as limits on physical quantities in the system, e.g., branch flow limits

30A complete overview of the operational planning and real-time operation process can be
found in Fig. 2.6. The focus in this work in on the process denoted as ‘component loading’ in
Fig. 2.6.
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that cannot be violated in particular credible system states. Depending on
the characteristics of the reliability criterion, credible system states can be
defined deterministically, e.g., all contingency cases up to N-k system states,
or probabilistically, e.g., all likely system states up to a cumulative probability
of occurrence of X% or risk based [127, 135]. An alternative way to define the
set of considered contingencies is using a discarding principle, which neglects a
subset of contingencies based on the residual risk level [85]. Depending on the
criterion and the decision stage, credible system states can consider possible
outages of transmission system components as well as real-time realizations of
demand and generation capacity, which are uncertain intra-day. Power flow
constraints for all credible system states are included in the Optimal Power
Flow (OPF) formulation and those are coupled by coupling constraints based
on ramp rate limits among others. Constraints can also be of a stochastic
nature, e.g., chance constraints [136], which need to be satisfied in a particular
percentage of the cases. Alternatively, constraints can focus on the α-percentile
of worst outcomes to limit consequences of bad outcomes [137].

Social surplus is an appropriate metric to rank performance of various available
reliability decisions. It consists of consumer surplus, i.e., the difference between
Willingness-To-Pay (WTP) and the price paid for the good, and producer
surplus, i.e., all profits in the market. In case of the electricity system, both
generators and grid operators are considered as producers [138]. However, not
all data to determine social surplus are known by the TSO when reliability
decisions must be taken. Therefore, it is not possible in practice to operate the
system using the ideal objective function that maximizes social surplus.

To mimic TSOs’ decision-making behavior it is important to take into account
TSOs’ data availability. Artificial rules based on physical or reliability indicators
or alternative socio-economic indicators need to be developed and applied in
practice. Alternative objective functions aim at minimizing total system cost,
possibly taking into account weights for the probability of occurrence of credible
system states [59, 139]. Conditional Value at Risk (CVaR) or Value at Risk
(VaR) can also be used as objective function to include risk aversion of the
decision maker [138, 136].

4.2.6 Quantitative Simulation

The ‘quantitative simulation’-module performs the decision-making process at
the two decision stages. For the operational planning decision stage, the decision-
making process is implemented as a two-stage stochastic security constrained
optimal power flow taking into account:
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• Constraints posed by the reliability criterion regarding credible real-time
system states

• Operational limits in the transmission system

• Available candidate decisions

• Power flow constraints

If multiple (combinations of) decisions satisfy reliability and operational limits,
possible (combinations of) decisions are ranked based on the objective function
as specified by the RMAC. The outcome of the optimization is a set of operator
actions that are optimally taken ahead of real-time to satisfy the reliability
criterion and operational limits.

In the real-time decision-making process, similar types of constraints are taken
into account, but the uncertainty is reduced. The outcome of the operational
planning decision stage is used as an input for the real-time operation stage. A
SCOPF formulation is used, which results in corrective actions that need to
be taken in real time to obtain an acceptable reliability level in the system as
defined by the reliability criterion.

Failure of corrective actions in real-time operation can be considered in the
decision-making process by including an additional decision stage, introducing
additional states [139]. Furthermore, additional stages in the optimization
process can be used to include pseudo-dynamic behavior of the system to
guarantee that constraints are satisfied in the post-contingency state before and
after corrective actions are fulfilled [74].

The quantitative simulation can use a non-linear AC SCOPF or alternative,
approximate, convex implementations. The true distinction between easy-to-
solve and hard-to-solve problems mainly aligns with convexity versus non-
convexity of the optimization problem, rather than linear versus non-linear
problems. Convex problems can be solved with a guaranteed convergence in
polynomial time to global optimality, whereas non-convex, smooth optimizations
typically solve quickly to a local optimum or slowly to a global optimum [140].
Relaxations by a process of only removing equations from the feasible set of
the original problem provides strong quality assurances on the solution of both
the relaxed and original problem. This is not the case with linearization [140].
Examples of approximate implementations are linear-programming models
that include reactive power and voltage magnitudes in a linear power flow
approximation (Linear Programming approximation of AC power flows (LPAC))
[141], convex relaxation approximations [142] or a DC SCOPF with reduced
computational burden [143].31 The outcome of the DC SCOPF can be verified

31An overview of recent work on power flow formulations is given in [140]
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by using it as an input for an AC power flow to check satisfaction of reactive
power limits, branch flow limits and voltage limits. If constraints are not
satisfied, actions can be taken based on heuristics in an attempt to find a
solution (optimality is not guaranteed) [62]. Alternatively, an iterative approach
that complements or substitutes the optimization can be used as well. The
outcome of the quantitative simulation is the final grid state and the actions
taken by the TSO aiming at a secure and operational system.

4.3 Implementation of the Simulation Module

The simulation module and its input modules can be implemented with different
levels of detail, depending on the final purpose of the analysis. The level of
detail should be different if the objective is to analyze differences in decisions
taken when an alternative RMAC is applied to a real system than if only
indicative results or trends should be obtained based on realistic test systems.
This work mainly focusses on the latter, which does not require a fully fledged
implementation of the different modules.32

4.3.1 High-Level Analytical Formulation of the Simulation
Module

TSO’s short-term reliability management according to a particular RMAC m is
a dynamic process that can be written analytically as:

Xm(t) = fm(Xm(t− 1),Y(t)) with Xm(0) = X0 (4.1)

Y(t) is a time series of vectors of external forcing input variables and X0
a vector describing the initial state of the system. Both Y(t) and X0 are
independent of the applied reliability criterion. Xm(t) is a time series of the
vector of state variables obtained if RMAC m is applied. Capital symbols
refer to vectors of random variables, whereas non-capital symbols refer to a
realization of the corresponding random variable. Some of the input parameters
are non-stationary, e.g., due to daily cycles. The function fm describes the
short-term decision-making behavior of a TSO based on a particular RMAC
m. fm is deterministic and differs between RMACs to represent their way of

32The implementation of the quantification framework in the GARPUR project mainly
focuses on the verification of prescribed decisions if an alternative RMAC is applied in a real
system, i.e., a part of the French grid. This requires a more detailed implementation of the
quantitative simulation module, which was out of the scope of this work and was executed by
colleagues of the research group, as discussed in appendix B and [140].
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handling uncertainties in the system. The system itself is described by a vector
of constant parameters φ. Table 4.2 summarizes the parameters and variables
collected in the input and state vectors introduced in Eq. (4.1).

Table 4.2: Examples of state variables and parameters in the simulation module.

External forcing inputs Constant parameters State vector Initial conditions
y φ x x0

Load forecast and
realization Line Parameters Generation

dispatch (D-1/RT) PST tap positions

Wind forecast and
realization

Generation
capacity Load supplied Switch positions

Component status Parameters
reliability criterion PST tap positions

Switch positions
Failure probabilitya Voltage
Operational limitsa Branch flow

Cost termsa

a Can be time varying or constant in time

Short-term reliability management ranges from a few days ahead of real time
up to real time and consists of multiple decision stages, as was shown in Fig.
4.2. The implementation in this work focuses on the two-stage decision-making
process consisting of day-ahead operational planning and real-time operation,
which Fig. 4.5 illustrates in more detail. The operational planning decision stage
is initiated by the reference stage, which consists of the outputs of the day-ahead
market clearing P initu (t). The operational planning stage determines actions to
take ahead of real time to satisfy the operational limits in real time and is based
on forecast values of load and RES generation. Besides the forecasts, possible
real-time system states are considered in this decision making to take into
account the uncertainty related to failures of components and forecast errors.
Depending on the applied reliability criterion, different sets of possible real-time
system states are considered. The outcomes of the operational planning Pu,da(t)
are used as an input for real-time operation together with the PST tap settings
and switch positions at the previous time instant and the real-time realizations
of RES generation, load and component statuses. The real-time operation stage
results in corrective actions required to restore the system to a secure state,
such as switch positions, PST tap settings, generator output, and the variables
determining the real-time system state, such as voltages and power flows.33

33Additionally, a short-term post-contingency stage and corrective control behavior stage
can be considered, but these stages are not considered in the implementation. The short-term
post-contingency stage takes into account the impact of automatic generation control actions
that are used to relieve operational limit violations shortly after a contingency takes place.
However, this state is not necessarily the most cost-effective state and might be not secure for
other contingencies, which asks for a corrective control stage. These corrective actions might



70 QUANTIFICATION FRAMEWORK FOR EVALUATING AND COMPARING PERFORMANCE OF
SHORT-TERM RMACS

Y(t) Xm(t− 1)

Operational
planning

Xm(t) Xm(t− 1)

Real-time
operation

Y(t) Xm(t)
Decision time

Reference
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planning

Real time

Corrective
control

P init
u (t)

RES/load
forecasts

Failure
rates
Forecast
errors

Decision
process

PST tap
settings
Switch
positions

Pu,da(t)

Realization
RES/load
Com-
ponent
status

PST tap
settings
Switch
positions

Pu,rt(t)
Switch
positions
PST taps
Load cur-
tailment
Voltage
Power flow

P initu (t) :Generator output after D-1 market clearing at time t
Pu,da(t) :Generator output after preventive redispatch at time t
Pu,rt(t) :Generator output after corrective redispatch at time t

Figure 4.5: Multi-stage procedure of the decision-making process of short-term
reliability management ranging from day-ahead operational planning up to
real-time system operation.

This multi-stage decision-making process represented by fm is typically
simulated using consecutive multi-stage optimizations, also denoted as SCOPF.
The computational burden of these optimizations is a challenge, due to the large
number of binary variables that is introduced in the formulation, especially in
real systems with thousands of nodes.

Different reliability criteria imply different security constraints in the optimiza-
tion formulations, leading to different functions fm. Differences exist in terms
of which and how system states are considered in the decision stages ahead
of real-time. Moreover, the way costs at different stages are considered can
fail, which is denoted as the corrective control behavior. This can have a large impact on
the security of the system. For this reason, currently used deterministic approaches aim at
securing the system mainly using preventive actions.
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differ and additional thresholds can be imposed on reliability indicators, such
as energy not supplied or power not supplied, either aggregated or separated
per contingency, node or consumer.

4.3.2 Quantitative Simulation

Each stage of the two-stage decision-making process considered in this work, i.e.,
day-ahead operational planning stage and real-time operation stage is modeled
by a DC SCOPF. This DC SCOPF is a mixed integer linear program (MILP).34

The general formulation of the SCOPF of operational planning is:

min
aprev,acorr

s ,Pcurt
s

Ctot(aprev,acorrs ,Pcurts ) (4.2)

subject to: G0(xda,aprev,yda) = 0 (4.3)

H0(xda,aprev,yda) ≥ 0 (4.4)

Gs(xs,acorrs ,Pcurts ,ys) = 0 ∀s ∈ S (4.5)

Hs(xs,acorrs ,Pcurts ,ys) ≥ 0 ∀s ∈ S (4.6)

|acorrs − aprev| ≤ ∆as ∀s ∈ S (4.7)

Where x are the state variables, aprev, acorrs and Pcurts are the control variables
and yda and ys are the external forcing inputs in respectively the day-ahead
stage and the states s in the set of credible system states S. G0 and Gs represent
the set of equality constraints in resp. the reference state and the credible states
s, whereas H0 and Hs represent the set of inequality constraints in resp. the
reference state and the credible states s. ∆as limits the rate of change between
the reference state and the credible state s, for instance in the case of ramp
rate limits.

The difference with the SCOPF for real-time operation is that the system
parameters in real time yrt are less uncertain than yda. Therefore, another set
of states S can be considered. The real-time operation stage uses the outcomes
of the operational planning stage, the preventive actions aprev, as an input.
These are part of the parameter set yrt, together with the real-time realizations
of wind generation, load and contingencies. The outcomes of the real-time
operation stage are the corrective actions that should be executed in real time
acorrrt and the real-time system state characterized by xrt.

34Information about the assumptions made in the DC SCOPF and the validity of the
assumptions applied in a DC power flow can be found in Appendix C.
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4.3.3 Reliability Criteria

Depending on the applied reliability criterion, the objective function differs in
terms of how uncertainty is taken into account. A general formulation of the
objective function in operational planning is:

Ctot(aprev,acorrs ,Pcurts ) = Cprev(aprev) +
∑
s∈S

ps · [Ccorr(acorrs ) + Ccurt(Pcurts )]

(4.8)
Each of these cost terms can be subdivided in different terms corresponding to
the costs of different reliability actions. Depending on whether a probabilistic
or deterministic RMAC is applied, the second term will be treated differently.
Also the set of considered system states S differs between RMACs.35

4.3.4 Transmission System Modeling

To model the system in the quantitative simulation module, the data representing
the power system should be appropriately imported. Data handling is not
straightforward in practice: data are missing, data sets contain bad data,
different models are used for the same, etc. Consistent data are crucial to
obtain adequate results. The transmission system data can be directly provided
in MATPOWER format. However, transmission system operators typically
have their data in a commercial software format, such as PSSE RAW data
format, or CIM format [144]. Converters are implemented to convert the system
data in the appropriate MATPOWER format to be used in the quantification
framework.36

4.3.5 Candidate Decisions

A reduced set of possible candidate decisions is included in the basic
implementation of the quantification framework applied in the case studies
of this work. Candidate decisions consist of taking appropriate reliability
actions or taking no action at all. Each action comes at a cost, which is part of
the respective cost functions. The constraints that need to be satisfied for each
reliability action are part of the function H0 and Hs in resp. Eq. 4.4 and 4.6.

35The objective of this chapter is to give a general representation of the objective function.
Different classes of RMAC are discussed in more detail in Chapter 8, taking into account
additional constraints that can be added to the optimization formulation to limit the amount
of load curtailment in total or per node.

36The converters were developed in the framework of the GARPUR project based on
existing implementations [145] that were made consistent and were modified to be used in
the quantification framework [146].
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Generator Redispatch

Generator redispatch consists of changing the power output of dispatched
generators to compensate for generator outages or to relieve congestion. It
makes use of the available upward and downward power reserves in the system
[147]. The TSO can ask generators to change their power output in a downward
or upward fashion.

Depending on the type of redispatch, the involved stakeholders need to be
economically compensated in an appropriate way. Therefore, generation
redispatch comes at a cost. Generation redispatch can be used ahead of real
time or as a real-time corrective action. The redispatch cost terms that are part
of Cprev and Ccorr are:

Cprev(∆P+
da,∆P

−
da) =

∑
u∈U

[
cred,+u,da ·∆P

+
u,da + cred,−u,da ·∆P

−
u,da

]
(4.9)

Ccorr(∆P+
s ,∆P−s ) =

∑
u∈U

[
cred,+u ·∆P+

u,s + cred,−u ·∆P−u,s
]

(4.10)

Where cred,+u,da and cred,−u,da are resp. the upward and downward redispatch cost of
generating unit u in the day-ahead stage, cred,+u and cred,−u are resp. the upward
and downward redispatch cost of generating unit u in the real-time stage, ∆P+

u

and ∆P−u are resp. the upward and downward redispatch of generating unit u
in the different decision stages, i.e., the day-ahead stage da and the credible
state s, and U is the set of all generating units.

The constraints that need to be satisfied in the context of generator redispatch
are:

Pminu ≤ Pu,da ≤ Pmaxu ∀u ∈ U (4.11)

∆Pu,da = Pu,da − P initu ∀u ∈ U (4.12)

0 ≤ |∆Pu,da| ≤ RRu,da ∀u ∈ U (4.13)

where Pminu and Pmaxu are resp. the upper and lower limit of generating unit
u, Pu,da the scheduling of generating unit u in the day-ahead stage, P initu the
scheduling of generating unit u after the day-ahead market clearing and RRu
the ramp rate limits of generating unit u.

To linearize the problem, following equations are used in which ∆P+
u and

∆P−u are considered as an upper bound on positive and negative redispatch,
respectively:

∆Pu,da = ∆P+
u,da −∆P−u,da ∀u ∈ U (4.14)
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Pu,da − P initu ≤ ∆P+
u,da ∀u ∈ U (4.15)

P initu − Pu,da ≤ ∆P−u,da ∀u ∈ U (4.16)

0 ≤ ∆P+
u,da ≤ RRu,da ∀u ∈ U (4.17)

0 ≤ ∆P−u,da ≤ RRu,da ∀u ∈ U (4.18)

Similar constraints need to be considered for each state s considered as credible
state in the operational planning optimization:

ζu,s · Pminu ≤ Pu,s ≤ ζu,s · Pmaxu ∀u ∈ U ,∀s ∈ S (4.19)

∆Pu,s = ∆P+
u,s −∆P−u,s ∀u ∈ U ,∀s ∈ S (4.20)

Pu,s − Pu,da ≤ ∆P+
u,s ∀u ∈ U ,∀s ∈ S (4.21)

Pu,da − Pu,s ≤ ∆P−u,s ∀u ∈ U ,∀s ∈ S (4.22)

0 ≤ ∆P+
u,s ≤ RRu ∀u ∈ U ,∀s ∈ S (4.23)

0 ≤ ∆P−u,s ≤ RRu +M(1− ζu,s) ∀u ∈ U ,∀s ∈ S (4.24)

ζu,s is a binary variable which disables the dispatch of generating units u that
are out of service in system state s.

Phase-Shifting Transformer Tap Changing

A phase-shifting transformer (PST) is able to control the power flow through
a certain transmission line and therewith the power flow in the entire grid.
The power flow is controlled by changing the phase angle over the line from
θ to θ + ∆θ. A PST induces a voltage in quadrature of the phase voltage in
the transmission line to change the voltage magnitude and phase angle. The
induced voltage is controlled by the tap positions. A PST can be represented
as a reactance in series with a phase shift as shown in Fig. 4.6 [148].

Two additional active power injections, each at a side of the PST, can be used to
model the phase-shifting angle ∆θ [148]. These two additional power injections
PPST,+(∆θ) and PPST,−(∆θ) change the power flow through the transmission
line. These power injections are fictitious as they do not exist in reality, so
their sum should be zero. Moreover, the phase shifting should be within the
operational limits. The equivalent model of the phase-shifting transformer is
shown in Fig. 4.7.
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∠θ + ∆θ ∠θ

∆θxPST xline

Figure 4.6: Graphical representation of a phase-shifting transformer in series
with a transmission line.

∠θ + ∆θ ∠θ

xPST xline
PPST,+(∆θ) PPST,−(∆θ)

Figure 4.7: Equivalent model of a phase-shifting transformer in series with a
transmission line.

The cost of phase-shifting transformer tap changing is much lower than the cost
of generation redispatch or load curtailment, but due to the wear out of the
device a switching cost should be attributed to it. This also helps the solver in
finding an optimum. This cost should be taken into account in the respective
cost functions:

Cprev(∆θ) =
∑
p∈P

cPSTp ·∆PPSTp,da (4.25)

Ccorr(∆θs) =
∑
p∈P

cPSTp ·∆PPSTp,s (4.26)

with cPSTp the cost of tap changing of PST p and ∆PPSTp,da and ∆PPSTp,s the
change in active power injection of the fictitious power source in resp. the
reference state da and the credible state s.

Moreover, following constraints should be taken into account in the optimization:

PPST,+p,da − PPST,−p,da = 0 ∀p ∈ P (4.27)

0 ≤ ∆PPSTp,da ≤ ∆PPST,+,maxp ∀p ∈ P (4.28)

|PPST,+,initp − PPST,+p,da | = ∆PPSTp,da ∀p ∈ P (4.29)

where PPST,+,initp represents the setting of PST p before the operational planning
stage is executed and PPST,+p,da represents the PST setting determined in the
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operational planning stage. ∆PPST,+,maxp is determined based on the maximum
phase-angle shift of the PST ∆θmax as:

∆PPST,+,maxp = ∆θmax
xPSTp

∀p ∈ P (4.30)

xPSTp is the reactance of the PST for which appropriate values can be found in
[149, 150]. P represents the set of all PSTs in the system.

The absolute value can be linearized by replacing Eq. (4.27) and (4.28) by
following equations:

∆PPSTp,da = ∆PPST,upp,da + ∆PPST,downp,da ∀p ∈ P (4.31)

0

PPST,+p,da − PPST,+,initp

 ≤ ∆PPST,upp,da ≤ ∆PPST,+,maxp ∀p ∈ P (4.32)

0

PPST,+,init − PPST,+p,da

 ≤ ∆PPST,downp,da ≤ ∆PPST,+,maxp ∀p ∈ P (4.33)

To represent the phase-shifting transformer tap changing in the corrective
decision stage, the constraints should be repeated ∀s ∈ S, similarly to the case
of generation redispatch. PST settings should be determined for each state s.
The initial settings PPST,+,initp should be replaced by the preventive settings
PPST,+p,da in Eq. (4.29), resulting in:

|PPST,+p,da − PPST,+p,s | = ∆PPSTp,s ∀p ∈ P,∀s ∈ S (4.34)

Topological Actions

The power flow in the grid can also be controlled by making topological changes,
such as for instance connecting or disconnecting a branch or switching a breaker
in a substation. This enables system operators to alleviate possible congestion
in a cheap way [151]. In this work, only branch switching is considered.

Similar to PST tap changing, a cost should be assigned to breaker switching,
which should be considered in the cost function:

Cprev(∆ωda) =
∑
o∈O

cbreakero ·∆ωo,da (4.35)
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Ccorr(∆ωs) =
∑
o∈O

cbreakero ·∆ωo,s (4.36)

with cbreakero the cost of switching breaker o and ∆ωo,da and ∆ωo,s the change
in breaker status of breaker o in resp. the reference state da and the credible
state s.

Breakers are modeled in optimal power flow formulations with on/off constraints.
This means that the constrains are enabled if the binary variable of the respective
breaker is equal to one and are disabled otherwise. They are considered as
lossless elements [152]. The constraints are modeled as:

ωo,da · P breaker,mino ≤ P breakero,da ≤ ωo,da · P breaker,maxo ∀o ∈ O (4.37)

−M(1− ωo,da) ≤ θk − θm ≤M(1− ωo,da) ∀o ∈ O (4.38)

|ωinito − ωo,da| = ∆ωo,da ∀o ∈ O (4.39)

0 ≤ ∆ωo,da ≤ 1 ∀o ∈ O (4.40)

ωinito and ωo,da represent resp. the status of the breaker in the initial state
and after preventive control and equals one if the breaker is closed and zero if
the breaker is open, M is a big number and P breakero represents the power flow
through the breaker. Eq. (4.38) sets the voltage angles θk and θm at the end
nodes of the breaker equal to each other. The absolute value in Eq. (4.39) can
be linearized in a similar way as with the phase-shifting transformer.

In the corrective control stage, the constraints should be repeated for all states
s in S. The breaker status ωo,s of each breaker needs to be determined for each
state s ∈ S. The constraint in Eq. (4.39) should be replaced by the constraint
in Eq. (4.41) to take the preventive status of the breaker as a reference:

|ωo,da − ωo,s| = ∆ωo,s ∀o ∈ O,∀s ∈ S (4.41)

Demand Flexibility

Demand flexibility is another measure available to ensure the power balance while
satisfying operational limits. A distinction needs to be made between voluntarily
and involuntarily demand flexibility. Load shedding refers to involuntarily,
intentional power cuts and aims at avoiding wider problems in emergency
situations. It is typically considered as a measure of last resort. Consumers
are typically not compensated if the TSO has to curtail load in emergency
situations. Load curtailment or demand-side management covers the voluntarily
reduction of load by consumers upon the request of the system operator to
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avoid load shedding or rolling blackouts or improve efficiency of operation. The
request by the system operator to shift demand over time can be expressed
using economic incentives or using a direct request, such as for instance using
an app [81].37

Although subtle differences exist in the different types of demand flexibility,
this work sticks with the term load curtailment to cover different types. Load
curtailment is considered to be executed by the system operator in this work
and is applied in emergency situations or when this turns out to be more
cost-effective if a trade-off between preventive, corrective and load curtailment
actions is made. The cost of load curtailment is determined by the interruption
cost, which is the product of the amount of load curtailed and the value of lost
load.

Load curtailment is typically not allowed in the preventive decision stage and
is only considered as an available action in real-time operation. Load that is
not supplied has a value for the affected consumers, which should be taken into
account in the decision-making process. Therefore, following cost terms should
be taken into account:

Ccurt(Pcurts ) =
∑
j∈J

P curtj,s · vj (4.42)

where vj represents the value of lost load for each consumer j and P curtj,s the
load curtailment of consumer j in considered state s.

The amount of load curtailment is also limited to the demand in the system. In
the case of demand-side management, if flexible load contracts are considered or
to safeguard critical appliances, it is also possible to take into account a lower
bound on the amount of load that should be supplied.

P curtj,s = P loadj,s − P
supplied
j,s ∀j ∈ J ,∀s ∈ S (4.43)

P supplied,minj,s ≤ P suppliedj,s ≤ P loadj,s ∀j ∈ J ,∀s ∈ S (4.44)

4.3.6 External Systems: Day-Ahead Market

The day-ahead market is the daily market clearing at power exchanges, which
creates a plan for the operation of the power system the next day and is the
main market for electrical power [129]. The modeling of the power flow, power
transmission and trade constraints is key for the modeling of the market clearing.

37An example of such an app was applied in Belgium in the winter of 2014-2015 when
system adequacy was low.
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The day-ahead market uses an auction mechanism to clear the market. A merit
order of generation units is created, starting with the cheapest unit available
up to more expensive units, until the entire load can be supplied. The price
formation in the day-ahead market is typically done based on the principle
’pay-as-cleared’. This means that all units are remunerated at the marginal
price of the system given by the intersection of the demand and supply bids.
The price is set by the most expensive generator dispatched to clear the market.
Market clearing within a single area is typically based on a copper plate system,
i.e., the physical network constraints are not taken into account [153].

4.3.7 Contingencies

Branches and generators are considered as two state component models or
two state continuous time Markov chains [104]. The state set consists of the
‘working’ state and the ‘outage’ state and at each time instant t the component
is in either of the two states. The state transitions are determined by the failure
rate λ and repair rate µ of the component, as shown in Fig. 4.8.

Working Outage
λ

µ

1− λ 1− µ

Figure 4.8: State diagram of the two state component model.

The Markov chain only bases itself on the most recent available information and
does not take into account earlier history. This is also denoted as the Markov
property, i.e., the probability of ending up in a certain state only depends on
the state at the previous time step. The Markov chain is time homogeneous,
because the transitional behavior does not change over time [154].

A continuous Markov chain can be viewed as a Markov chain where the
transitions between states are defined by (constant) transition rates, as opposed
to transition probabilities at fixed steps. The probabilities of changing states
in an incremental time interval dt are modeled by the following differential
equations:

dpworking

dt
= µ · poutage − λ · pworking (4.45)

dpoutage

dt
= λ · pworking − µ · poutage (4.46)
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If the initial conditions are pworking = 1 and poutage = 0, this results in:

pworking(t) = µ

λ+ µ
+ λ

λ+ µ
· e−(λ+µ)·t (4.47)

poutage(t) = λ

λ+ µ
− λ

λ+ µ
· e−(λ+µ)·t (4.48)

For t→∞, the reliability of being in an outage or working state becomes:

pworking = µ

λ+ µ
(4.49)

poutage = λ

λ+ µ
(4.50)

Combinations of failures of system components k in a system state s are
considered to be independent and are calculated as:

ps =
∏

k∈Koutage

poutagek

∏
k∈Kworking

(1− poutagek ) (4.51)

Where Koutage is the set of components in failure state and Kworking is the set
of components in working state.

This implementation is a simplification of reality, because memoryless and
time homogeneous behavior is not satisfied in practice. Transition probability
density functions are generally not exponential and change over time. Moreover,
multiple component failures cannot be considered as completely independent.
Common mode failures or cascading failures can happen, which do not satisfy
the assumption of independence.

4.4 Conclusion

Comparing performance of RMACs is important to convince stakeholders of
applying an alternative reliability management approach and criterion. This
chapter proposes a quantification framework for evaluating and comparing
performance of short-term RMACs. A large scale implementation of the
framework based on the presented theoretical design can be used to guide
regulators and TSOs towards technically, economically and socially acceptable
RMACs. The framework focuses on power system operational planning and
real-time operation decision-making processes. The integrated, generic and
modular design used in the presented framework goes beyond existing literature,



CONCLUSION 81

which focuses on selected issues, without analysing the full reliability problem
in an integrated manner. Due to the modular structure of the quantification
framework, building blocks can easily be replaced by more elaborated or detailed
blocks with the same functionality.

This chapter focused on a discussion of the simulation module, its input modules
and their interactions. A basic implementation of the simulation module
based on a DC SCOPF is used in the case studies in later chapters. This
implementation is sufficient to have an indication of relative performance of
different RMACs and analyze trends in performance. The presented framework
is used as the base for the development of the GARPUR quantification platform,
which incorporates a more detailed implementation of the quantitative simulation
module and is tested on real systems.





Chapter 5

Performance Evaluation of
Short-Term RMACs

The overall decision-making process of selecting an appropriate reliability
management approach and criterion is influenced by long-term and short-term
uncertainties. To assess the long-term impact of using an alternative reliability
management approach and criterion, similar uncertainties need to be considered
as in transmission expansion planning [155]. The performance of short-term
reliability management is also influenced by several short-term uncertainties,
such as contingencies, load and renewable energy sources, behavior of corrective
control, behavior of exogenous actors and unforeseeable events. The focus of this
chapter is on the performance evaluation of short-term reliability management
impacted by short-term uncertainties. The analysis of long-term uncertainties
is out of the scope of this thesis.

Performance evaluation of short-term RMACs is an off-line process and consists
of four main steps:

1. Selection of a performance evaluation technique and appropriate sampling
technique

2. Simulation of TSO’s decision-making behavior for different short-term
RMACs

3. Selection and calculation of performance indicators

4. Post-processing of results and comparison of performance of different
RMACs

83
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The focus of this chapter is on the first point, which needs to be executed
before the quantification framework discussed in Chapter 4 can be used, and
the fourth point. The simulation of the decision-making process (point 2) and
the calculation of performance indicators (point 3) were discussed in more detail
in respectively Chapters 4 and 3.

Section 5.1 describes the performance evaluation of short-term RMACs in an
analytical way. Section 5.2 describes techniques to evaluate performance of
short-term RMACs that enable an efficient use of the quantification framework
discussed in the previous chapter in analyses with different objectives. Section
5.3 discusses the advantages and shortcomings of the techniques, generally and
in the context of the objectives of this thesis work. Section 5.4 elaborates on
the performance evaluation technique used in the case studies in later chapters
and discusses its procedure. Conclusions and key take-aways of this chapter are
given in Section 5.5.

Parts of this chapter are published in the paper Qualitative comparison of
techniques for evaluating performance of short-term power system reliability
management, Heylen E., Troffaes M., Kazemtabrizi B., Deconinck G. and Van
Hertem D., Innovative Smart Grid Technologies Conference 2017.38

5.1 Analytical Formulation of Performance Evalua-
tion

The objective of performance evaluation is to translate the decision-making
trajectory and real-time system state represented in the vector Xm resulting
from the application of an RMAC m in quantitative performance indicators
Qi,m:

Qi,m(t) = gi(Xm(t)) (5.1)

where gi is a deterministic function translating the state space vectors Xm(t)
into a performance indicator Qi,m(t). Performance indicators Qi,m(t) can be
system related, such as over- or undervoltage or line overloading, consumer
related, such as energy not supplied or outage cost, or can consider aspects
of both, such as total system cost.39 The value of the performance indicator
at time t implicitly depends on the previous state and the external forcing
inputs at time t. For this reason, the performance indicators follow a trajectory

38The first author is the main author of the paper. The contributions of the first author
include the review and comparison of the techniques.

39Besides the quantitative indicators, qualitative aspects need to be considered in a complete
performance evaluation, such as data issues and ease of use, resulting in a multifaceted analysis.
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over time that depends on the applied reliability management approach and
criterion. Fig. 5.1 gives a schematic overview of the complete procedure using
the analytical notation introduced in this chapter and Chapter 4.

Simulation
Xm(t) = fm(Y(t),Xm(t− 1))

Evaluation
Qi,m(t) = gi(Xm(t))

Simulator output Xm(t)

Statistical processing

Performance indicator Qi,m(t)

Initial conditions X0

External
forcing
inputs Y

Constant parameters φ

RMAC m

Figure 5.1: Schematic overview of the different steps in quantitative performance
evaluation of short-term RMACs.

5.2 Performance Evaluation Techniques

Techniques for evaluating performance of short-term RMACs can be classified
in simulation techniques and analytical approaches. Simulation techniques, such
as Monte Carlo simulation, simulate the actual process and random behavior of
the system. The uncertainty in terms of external forcing inputs Y is included in
the sampling process, as values with a higher probability occur more frequently
in the sample [18]. Conclusions about the distribution of the output variables
can be made based on simulation techniques. Analytical techniques are typically
based on a mathematical model resulting in a specific solution for a given input.
Uncertainties can be included using stochastic models. A distinction can be
made between sequential and non-sequential techniques.

A similar classification exists for reliability assessment techniques. Reliability
assessment can be considered as part of the performance evaluation. However,
major and important differences between reliability assessment and performance
evaluation exist. A complete and reliable performance evaluation requires that
both the real-time system state resulting from reliability management and the
decision-making trajectory followed while executing reliability management are
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evaluated [63, 64]. Reliability assessment on the contrary mainly focuses on the
real-time system state. Another important difference is that especially failure
states are of interest for reliability assessment. Performance evaluation on the
contrary also has to evaluate the performance of reliability management in
normal states. A better trade-off between preventive and corrective actions has
the potential to improve performance in normal states. Complete performance
evaluation of reliability management approaches and criteria, considering both
the decision-making trajectory and the real-time system states, has not been
specifically covered in literature so far. Nevertheless, an efficient and complete
performance evaluation of different RMACs is crucial, given the importance for
society of an adequate reliability level.

5.2.1 Sequential Simulation

Sequential simulations enable system stakeholders to make conclusions about
the distribution of performance indicators for time periods of length T , e.g.,
a year. A sample of Y(0), . . . ,Y(T ) with N realizations is generated. For
each realization, xm,n(t) = fm(xm,n(t− 1),yn(t)) is recursively calculated with
xm,n(0) = x0. Performance indicators qperiodi,m,n =

∑T
t=1 qi,m,n(t) can be evaluated

using Eq. (5.1) for each realization n of duration T .

A sample should represent the variation between different time periods of length
T in terms of uncertainties regarding load and wind forecasts and realizations
and availabilities of system components. A sample can be generated based
on historical time series of forecasts and realizations of load and wind and
system component statuses or based on statistical models of load, wind power
and failure and repair of system components [156]. However, the former is
challenging due to non-stationarities in the time series, whereas the latter is
challenging due to correlations between the parameters in the multi-dimensional
input parameter space.

The mean of the performance indicator and its confidence interval can be
approximated as:

E[Qperiodi,m ] ≈ 1
N

N∑
n=1

qperiodi,m,n ± tα ·
σ[qperiodi,m ]
√
N

(5.2)

where σ[qperiodi,m ] =
√

1
N−1

∑N
n=1(qperiodi,m,n − q̄

period
i,m )2 is the sample standard

deviation, q̄periodi,m = 1
N
∑N
n=1 q

period
i,m,n , and tα is the α-percentile of the t-
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distribution.40 Moreover, the (joint) marginal distribution of performance
indicators Qi,m(t) can be determined based on the simulations, which enables
the verification of the relative performance of RMACs at each time instant t in
the period T .

5.2.2 Non-Sequential Simulation

Non-Sequential Simulation (NSS) techniques enable system stakeholders to
draw conclusions about the (relative) performance of different RMACs at an
average point in time and the uncertainty on this value. Evaluations are made
for random snapshots. For each snapshot, the different decision stages in
short-term reliability management are simulated. Non-sequential simulations of
short-term reliability management can be represented as:

xm,n = fm(x0,yn) ∀n ∈ 1.. N (5.3)

where yn is a realization of external forcing inputs in the sample and x0 the
initial conditions. The time dependence is not explicitly considered in non-
sequential simulations. Mean and variance of the performance indicators Qi,m
can be calculated similarly to Eq. (5.2).

The sample of N system states should represent the correlation between the
input parameters and the distributions of the external forcing inputs. The
sample of external forcing inputs can be generated based on stochastic models,
but this is challenging due to correlations between the parameters of the input
space. Alternatively, samples can be randomly drawn from (historical) time
series of the different parameters in the external forcing input space. However,
non-stationarities in the time series make this challenging.

The performance of short-term reliability management strategies might be
strongly affected by a set of high-impact contingencies that only occur with
a low probability. The effect of these contingencies only becomes visible in
the result after a large number of simulations. To reduce the number of
simulations, importance sampling can be applied. By sampling based on a
different distribution than the distribution of interest, highly impacting states
of the external forcing input space appear more often in the sample. However,
finding such an alternative distribution is typically challenging [158, 159].

40Alternatively, non-parametric bootstrapping can be used to obtain asymmetric confidence
intervals taking into account the asymmetry of the distribution of the performance indicators.
However, uncertainty is typically underestimated with bootstrapping techniques [157].
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5.2.3 Emulation

An emulator is a statistical representation of a simulator and is typically
developed using a Gaussian process or analogous Bayes linear theory based on
a reduced number of simulations [160, 161]. It enables the determination of
uncertainties in model outputs arising from numerous sources of uncertainty, e.g.,
parametric uncertainty, condition uncertainty, functional uncertainty, stochastic
uncertainty, etc. [119] Emulation is applied in other application contexts
requiring highly complex models that are computationally intensive to simulate,
such as transmission expansion planning [162], system generation planning [163],
climate models [164] or to predict the behavior of nuclear power reactors [161].
The statistical models are typically based on different hierarchical levels, i.e.,
less detailed models that are more frequently evaluated and more complex,
detailed models that are harder to evaluate and are only evaluated a limited
number of times. The error made due to approximation can be estimated from
the statistical model [160, 161].

The single step function fm, representing the simulator of the RMAC m, is
a deterministic function, which can be approximated by a function f̃m, the
emulator:

X̃m(t) = f̃m(X̃m(t− 1),Y(t)) (5.4)

The emulator should satisfy two criteria [160]:

1. The emulator should represent the true value fm(x) at the points of the
training set, due to the deterministic characteristics of the function.

2. At other points, the distribution for fm(x) should have a mean value
f̃m(x) that represents a plausible interpolation or extrapolation of the
training data and the probability distribution around the mean represents
the uncertainty about how the simulator might interpolate/extrapolate in
a realistic way.

The function f̃m is determined based on simulations for a training sample of
external forcing inputs and system states (xm(t− 1),y). The training sample
is a subspace of the input region of interest of the single step function fm.
Prior beliefs about the simulator, i.e., before the training data are considered,
are taken into account. These prior beliefs are represented by the mean and
covariance structures of the Gaussian process [161]. The difference between
statistical emulation and traditional regression is that traditional regression
does not satisfy the above criteria. Polynomial regression might satisfy the first
one, but fails to satisfy the second [160].
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Instead of simulating the exact function fm for different external forcing inputs
y and different previous system states xm, the function f̃m can be evaluated
directly in terms of y and xm(t − 1). This results in an approximate value
of the non-sequential performance indicator Q̃i,m. The expected value of the
approximate indicator can be calculated directly if the multivariate distribution
Π(xm,y) is known:

E[Q̃i,m] =
∫

X̃m

∫
Y

Π(xm,y) · gi(f̃m(xm,y))dX̃mdY (5.5)

However, this is rarely the case in practice as the multivariate distribution of
the system states is hard to determine. Alternatively, direct evaluations of the
approximate function f̃m for a sample of external forcing inputs and system
states that represents the multivariate distribution Π(xm,y) can be used.

Eq. (5.4) corresponds to the emulation of the single step function xm(t) =
fm(xm(t − 1),y(t)). The emulation of this single step function can be used
to construct an emulator for the dynamic simulator of the decision-making
process (xm(1), . . . ,xm(T )) = fm(x0,y(1), . . . ,y(T )). In this case, the full
simulator output (xm(1), . . . ,xm(T )) is approximated by iteratively applying
x̃m(t) = f̃m(x̃m(t − 1),y(t)), with f̃m the single step function in Eq. (5.4)
for different time series of external forcing inputs and initial system states
(x0,y(1), . . . ,y(T )) within the input region of interest of the full simulator. The
distribution of the sampled trajectories (x̃m(1), . . . , x̃m(T )) needs to be verified
to determine whether the applied training data for the single step emulator are
adequate. If not, further runs of the single step function are required and the
procedure needs to be repeated [161].

If an emulator of the dynamic simulator can be obtained, the calculation time can
be significantly reduced compared to a simulation approach, as time-consuming
simulations are replaced by analytical function evaluations. However, a challenge
of emulation is the sampling of an appropriate training set. Short-term reliability
management is subject to a complex, highly dimensional parameter space of
external forcing inputs, which might be hard to process in an emulation technique.
A sufficiently high number of simulations is required to obtain a satisfactory
approximation f̃m, if the function fm is highly variable. This aspect is difficult
to verify without knowing the exact behavior of the function. Moreover, high
impact low probability events might not be well represented in the emulator if
only a small number of system states is simulated. Therefore, it is important
that the emulator is also trained on extreme events.
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5.2.4 Analytical State Enumeration

Analytical State Enumeration (ASE) considers a prescribed set of combinations
of external forcing inputs and initial conditions with probabilities assigned
to them. The fact that the probability distribution of the initial state x0 is
not known analytically and is hard to determine in practice leads to a similar
challenge as in non-sequential simulation. Therefore, initial conditions are
typically assumed to be constant. The state space of external forcing inputs
Y is divided in intervals ∆yl for which the function fm is simulated at one
point yl in the interval. The function fm is approximated by assigning the same
function value fm(x0,yl) to all y within the interval ∆yl. The accuracy of the
results strongly depends on the set of intervals Ł and the sizing of the intervals
∆yl, which can be improved using appropriate snapshot selection techniques.

The probability of occurrence of a state in the interval ∆yl is calculated as:

Π(x0,∆yl) =
∫

∆yl

Π(x0,y)dy (5.6)

The expected value of the performance indicator can be approximated as:

E[Qi,m] ≈
Ł∑
l=1

Π(x0,∆yl) · fm(x0,yl) (5.7)

Applying state enumeration in a sequential context is challenging and would
require the simulation of a prescribed set of time series of external forcing
inputs. However, the set of all possible time series is hard to approximate with
a reduced set of time series due to the many possible combinations of external
forcing inputs at different time instants. Also the probability of occurrence of a
certain time series is hard to obtain. Alternatively, shortened sequences can
be applied, for instance representing characteristic days, which can be selected
using heuristics, clustering techniques or optimization-based methods [165].

5.3 Comparison of Performance Evaluation Tech-
niques

The techniques to evaluate performance of short-term RMACs introduced in
the previous section are compared in this section. An assessment is made
taking into account the objectives of this thesis, which explains the choice of the
applied evaluation technique. This incorporates the choice between sequential
and non-sequential techniques on the one hand and between simulation and
analytical techniques on the other hand.
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5.3.1 Sequential versus Non-Sequential Evaluation

Sequential and non-sequential evaluation techniques cover different levels of
detail and have a different computation time. The trade-off between these two
aspects depends on the objective of the analysis. Alternatively, pseudo-sequential
techniques can be considered.

Sequential

Sequential simulations consider the dynamic process of decision making in
short-term reliability management. Time correlations and interdependencies
between decisions taken at subsequent time instants are taken into account.
To consider this high level of detail in the simulations, sequential simulations
are done over a longer time period T , which increases the simulation time.41
Moreover, a sufficiently high number of simulations should be executed for time
periods with similar characteristics, e.g., for different years.

Performance of RMACs depends on external conditions, such as weather,
demand levels, etc., which vary between time instants t in the period T .
Sequential simulations make it possible to determine the marginal distribution
of performance indicators for each time instant t in the period T . Based on these
results, the performance of reliability management approaches and criteria over
the period T under consideration can be fine-tuned. Given the characteristics
of sequential evaluation techniques, they can be used to compare the detailed
decision-making process according to an alternative RMAC with the state-of-
the-art decision making in real systems and to fine-tune the performance of
promising RMACs.

Non-Sequential

Non-sequential techniques consider evaluated time instants to be independent
and do not consider time correlations of input parameters or interdependencies
in decision making between time steps. This is a strong simplification, but
significantly reduces computation time compared to sequential techniques. Non-
sequential techniques are typically applied in high-level analyses that aim
at obtaining indicative results in terms of performance. Due to their lower
computation time, non-sequential techniques are better suited to assess a large
set of RMACs with different settings of controllable parameters. Also a large

41The high simulation time is already an issue in simulations for a single time instant,
especially in large systems with a large set of binary variables. This was discussed in more
detail in Section 4.3.
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set of exogenous factors can be analysed to assess which factors have the highest
impact on the different performance dimensions.

Pseudo-Sequential

Studies in the context of power system reliability assessment have shown
that similar results can be obtained in terms of energy not supplied
and load curtailment if non-sequential simulations are used compared to
sequential simulations [166, 167, 168]. However, based on non-sequential
simulation techniques, interruption duration and interruption frequency cannot
be determined as quantitative performance indicators. Pseudo-sequential
approaches are developed that make it possible to determine interruption
duration and interruption frequency indicators in a traditional reliability
assessment [169, 170, 171]. These approaches only execute sequential simulations
for reduced time periods. However, they cannot be directly applied in a
performance evaluation context, as they mainly focus on failure states. The
performance of RMACs is influenced by the trade-off between preventive and
corrective actions, which also has an impact in normal states without component
failures. Pseudo-sequential techniques that perform well in the context of overall
performance evaluation of RMACs are not yet available in literature.

5.3.2 Comparative Case Study of Non-Sequential Evaluation
Techniques

The objective of the case studies in this thesis is to obtain indicative results in
terms of performance of different RMACs. The focus is not to quantify the exact
change in performance, but to observe trends in the average performance that
can be distinguished if different RMACs are applied. This explains the choice of a
non-sequential evaluation technique in the case studies. The three non-sequential
approaches, i.e., non-sequential simulation, analytical state enumeration and
emulation, are illustrated and compared for a basic three-node test system as
shown in Fig. 5.2.

In this test system, the expected value of the cost of preventive actions is
estimated if the N-1 criterion is applied in the operational planning stage. The
input variable is the total demand in the system, which ranges from 40 MW
up to 125 MW. Fig. 5.3a shows the probability density function of the total
demand in the system. This is clearly multi-modal and does not follow a
standard parametric distribution. The distribution of demand over the nodes
is assumed to be constant. The system only relies on conventional generation.
The analysis is done for a system in which all components are available in the
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Figure 5.2: Three-node test system.

operational planning stage. The described assumptions result in an analysis
with one input, i.e., total system load, and one output variable, i.e., expected
preventive costs.

Fig. 5.3b shows the approximation of the function fm using supervised learning
based on Gaussian processes.42 Besides the estimate of the function, the 99%
confidence interval around the estimate is given. The main uncertainty on the
estimate is found at the beginning and the end of the range of total system load.
Fig. 5.3c shows the approximation of the function fm in the analytical state
enumeration approach. The range of total system load is divided in several
intervals and an evaluation is made in each interval. Fig. 5.3d shows the sample
of output variables resulting from the non-sequential simulation technique and
how this resembles the function fm and the probability density function of total
system demand.43 The density of the data points in the sample corresponds to
the probability of occurrence of a certain total demand in the system.

Table 5.1 compares the non-sequential simulation, emulation and analytical state
enumeration techniques in terms of the obtained expected preventive cost and the
number of simulations. Non-sequential simulation is a computationally intensive
approach, even in small, low-dimensional systems, because a representative
sample of the whole range of total system demand should be simulated. Monte
Carlo simulation converges very slowly, i.e., as

√
N , which means that a tenfold

increase in accuracy requires a hundredfold increase in the sample size. An
advantage of Monte Carlo is that the speed of convergence does not depend
on the dimensionality of the problem, which is normally the problem with
analytical integration, such as quadrature methods [174]. Random sampling

42The emulation is executed using the Scikit-learn python package for machine learning
[172]. The covariance structure or function, which specifies the covariance between pairs of
random variables, is modeled using a radial basis function kernel. This covariance function
has the property that it is almost unity between variables whose inputs are very close and
decreases as their distance in the input space increases [173].

43Only a randomly selected subset of the total sample is plotted for clarity reasons.
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is applied in this case study. This implies a large number of simulations as
shown in the second and third row of Table 5.1. On the contrary, the method
is easy to understand and apply and makes it possible to verify the uncertainty
on the expected value in terms of a confidence interval and the significance of
differences in performance between different RMACs based on paired hypothesis
tests. Moreover, the distribution of the quantitative performance indicators can
be assessed. The emulation technique gives similar results as non-sequential
simulation. The emulation technique is based on a reduced set of simulations
and a high number of function evaluations of the approximate function f̃m
with a very low computational cost. The result of analytical state enumeration
lies within the confidence intervals of the simulation and emulation techniques.
Confidence intervals cannot be estimated based on analytical state enumeration,
as this technique focuses on expected values [18]. However, the approach is
particularly useful to obtain indicative results in terms of the average change in
performance.

Table 5.1: Results of the three-node case study.

E[Cprev ]1[e] Number of Number of
simulations fm2 evaluations f̃m

ASE 353.21 8 /
NSS 348.55 [338.52;358.58] 10000 /

349.19 [343.89;354.50] 36000 /
Emulation 347.66 [337.48;357.83] 8 10000

353.60 [348.17;359.03] 8 36000
1 The results between brackets represent the 99% confidence interval
2 The computation time per simulation is the same for the three techniques

Emulation has an advantage compared to analytical state enumeration, namely
that it enables the quantification of uncertainty for all points which have not been
evaluated [162]. Emulation is more difficult to apply with multi-dimensional
input and output spaces, which might contain discrete variables. ASE is easy
to use on the contrary. A drawback of analytical techniques is that simplifying
assumptions and approximations need to be made due to the complex nature
of short-term reliability management [18]. This makes them hard to apply in
highly-dimensional systems with a lot of uncertain parameters. The performance
of analytical techniques can be improved using principal component analysis
in a preprocessing step. This analyzes the importance of different parameters
in the parameter space and makes it possible to reduce the dimensions of the
parameter space by focussing on the most influential parameters.
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(d) Non-sequential simulation.

Figure 5.3: The application of non-sequential performance evaluation techniques
to a three-node test system with total system demand as input variable and
preventive costs as output variable.

5.4 Implementation of the Evaluation Module

The case studies in this work use time-collapsed models in non-sequential
techniques. These types of models ignore correlations across time, but are
suitable to determine trends in performance between different RMACs. One
hour time steps are considered. A non-sequential, analytical state enumeration
technique that evaluates performance of RMACs for a characteristic set of
system states is applied in the case studies.
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5.4.1 Evaluation Procedure

An important part of the evaluation procedure is the selection of system states to
evaluate. The set of system states under evaluation should theoretically consist
of all possible operating states, considering component outages and operating
states representing uncertainties regarding forecast errors of load and RES
generation. However, this is not possible in practice. System states should be
selected that are used as input for the operational planning stage and real-time
operation stage. Operational planning states are characterized by the forecast
of load and RES and possible system outages. Real-time system states are
conditional upon the day-ahead, operational planning state and represent the
realization of load and power generation from RES, as well as contingencies.44

It is important that the selection of real-time system states under evaluation
is not biased towards a certain RMAC. For instance, if only the N-1
contingency states are considered in the evaluation procedure, it might be
that the performance obtained for the N-1 criterion is better than its effective
performance. To avoid bias towards a certain criterion, the contingency set
in ASE used for the evaluation consists of the union of the contingency sets
of each of the RMACs under evaluation complemented with some additional
contingencies. This is graphically illustrated in Fig. 5.4. The additional
contingencies are selected based on their probability of occurrence, i.e., the most
probable contingencies up to a prescribed cumulative probability are considered.

RMAC 1 RMAC 2

Evaluation

All contingencies

Figure 5.4: Relation between the set of contingencies under evaluation and the
set of contingencies considered in the RMACs.

Day-ahead market clearing and operational planning are simulated for the
parameters related to each of the states in the set of operational planning

44The selection of system states in the case studies is discussed in more detail in the
respective case studies in later chapters.
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states, after which the real-time system states are simulated. If all real-time
system states related to the operational planning state are simulated, the next
operational planning state is selected and the procedure is repeated. Finally,
if all states are treated, the results are used as an input for the quantitative
evaluation of the performance in which the performance indicators Qi,m are
calculated. ASE explicitly takes into account the probability structure in the
calculation of the expected values of the performance indicators. The evaluation
procedure is shown in Fig. 5.5.

Take a parameter
vector yda from the
sample

Sampling or state
selection of yda and
yrt given yda

Simulate market
clearing and
operational planning

Take a parameter
vector yrt for given
yda from the sample

Simulate real-time

Results

Results

All yrt for given yda
in sample considered
in simulation?

All yda in sample
considered in
simulation?

Performance
quantificationResults

yes

yes

no

no

Probabilities

Figure 5.5: Evaluation procedure.
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5.4.2 Comparing Performance of RMACs

Different RMACs will lead to different decisions implying a different performance.
If the same process with equal input data is repeated for various RMACs,
performances can be compared. Comparing the performance of RMACs
is preferably done on a relative scale. Therefore, benchmarking against a
well-known RMAC is a useful approach. Quantification of performance of
RMACs using the performance metric and quantification framework proposed
in resp. Chapters 3 and 4 makes it possible to obtain a numerical indication of
change in performance if an alternative RMAC is used in specific circumstances.
However, the performance of reliability criteria strongly depends on various
system parameters, such as value of lost load, system robustness, etc. [127].
Therefore, RMACs with changing parameters, e.g., the considered contingency
set, reliability targets, etc., as a function of system characteristics and conditions
might be more effective.

5.5 Conclusion

Two types of techniques to evaluate performance of reliability management
approaches and criteria can typically be distinguished: analytical techniques
and simulation techniques, which can be sequential or non-sequential in nature.
Although the same classes of techniques are applied in reliability assessment,
the characteristics of performance evaluation differ from reliability assessment.
Firstly, performance evaluation requires that the complete decision-making
trajectory according to a certain RMAC is evaluated besides the real-time
system state that results from it. Secondly, performance evaluation should
consider both normal and failure states, whereas reliability assessment mainly
focuses on failure states. These differences should be taken into account in the
evaluation procedure.

Sequential and non-sequential simulation and analytical techniques each have
their advantages and shortcomings. Their applicability and suitability in a
certain context depend on the objectives of the analysis. The objective of this
work is to give indications of possible changes in performance if alternative
RMACs are applied rather than to make a detailed analysis of using an
alternative RMAC in a real system. For this reason, non-sequential techniques
are applied. They enable system stakeholders to evaluate the performance and
verify its sensitivity to exogenous factors for a large set of RMACs with different
settings of the controllable parameters, given the long computation time of the
SCOPF to simulate TSO’s decision-making behavior.



Chapter 6

Inequality and Inequity of
Power System Reliability

Many decisions of network operators and regulators have an effect on the
reliability level of power systems: building new lines, the installation of power
flow control equipment, increased penetration of intermittent generation [175],
generation adequacy load-shedding plans [78], the application of new reliability
criteria [63], asset management and maintenance [176], cross-border cooperation
on balancing [177], etc. However, these decisions do not affect all consumers
equally. Different types of consumers exist and some are more affected than
others, depending on their characteristics and location. If consumers feel that
their reliability level is unfairly low compared to other consumers, they could
complain and oppose those decisions that lower their reliability level. Therefore,
in addition to measuring the change in costs and the change of the overall
reliability level, it is important that power system decision makers also assess
the relative distribution of unreliability among consumers. Assessing inequality
and inequity between consumers in terms of reliability levels makes it possible
to take appropriate measures to reduce inequality and inequity, either directly
or indirectly. This can suppress public opposition against decisions that are
crucial to improve the performance of power systems and has a positive effect
on their social acceptability.

No indices that express the distribution of unreliability among consumers in a
single number and are therefore easy to interpret have been presented before.
Nowadays, the assessment of equality and equity, if performed, is done based on
graphs, tables or operator assessment based on judgement calls or questionnaires.
These are hard to assess and compare in a unified way, resulting in less effective

99
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decision making. To measure the inequality and inequity of power system
reliability, this chapter reformulates the Gini index in terms of reliability. The
proposed index is generic in the sense that different reliability indicators can be
applied. The index can also be used to evaluate generator connectivity, e.g., to
assess inequality in terms of RES curtailment. This work formulates the Gini
index in terms of energy not supplied, total cost for consumers and interruption
costs. In this way, the adapted Gini index, which is normally used to measure
income inequality [178, 179, 180, 181], can be used in a power system reliability
context. The inequality assessment can be applied by regulating bodies and
system operators in the assessment of reliability decisions in different contexts,
e.g., adequacy, security, investment decisions, etc.

Section 6.1 formulates the definition of equality and equity in a power system
reliability context. Section 6.2 describes the design of the indices and discusses
their strengths and weaknesses. The usefulness of the indices is illustrated in
three case studies, each with a different background: (i) adequacy, (ii) security
and (iii) real reliability data. The first case study, in Section 6.3, evaluates the
inequality resulting from the 2014-2015 load-shedding plan in Belgium.45 The
second case study, in Section 6.4, focuses on the comparison of the inequality
resulting from short-term reliability management based on different reliability
management approaches and criteria. The third case study, in Section 6.5,
investigates inequality and inequity between different consumer groups based
on real reliability data of Norway. Section 6.6 discusses the practical use of
the inequality index and introduces possible measures to reduce inequality and
inequity of power system reliability. Finally, Section 6.7 concludes.

This chapter is partly based on the paper Inequality of Power System Reliability:
A Summarizing Index, Heylen E., Ovaere M., Proost S., Deconinck G. and Van
Hertem D., submitted to IET Generation, Transmission and Distribution.46

45Because of generation adequacy concerns in the winter of 2014-2015, the Belgian load-
shedding plan came into the picture. This plan enables the Belgian TSO ELIA to temporally
shed load in different regions in case of emergency. Public opposition to this plan was large,
because people felt that the burden of the load shedding was placed on a small group of
(rural) consumers and that the plan affected some industrial areas and some regions more
than others.

46The first author is the main author of the paper. The contributions of the first author
include the idea of using an inequality index for reliability and the modeling and analysis of
the case studies about the load-shedding plan and the comparison of RMACs. The design of
the inequality indices based on the Gini index are the result of a collaboration between the
first two authors. The paper includes an additional case study to illustrate the usefulness of
the indices in the assessment of investment decisions.
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6.1 Definition of Inequality and Inequity of Power
System Reliability

Economists make a distinction between equality and equity. Equity is defined
as giving everyone what they need or deserve, whereas equality is defined as
treating everyone the same, regardless of differences in needs or desert. This
section translates the economic definition to the power system reliability context.
A generic inequality ratio is defined, in which different reliability indicators can
be applied. Depending on the indicator that is applied, the definition of the
inequality ratio will be closer to equality or to equity.47

6.1.1 Generic Inequality Ratio

The inequality ratio expresses whether a certain entity, i.e., node, consumer
group or individual consumer, is treated equally or equitably and depends on the
consumer’s share in total demand and its share in total unreliability expressed
in terms of a reliability indicator.

The vector w contains the share of demand of each consumer48 j in the total
electrical energy demand in the set J of all consumers:

wj =
DEnergy
j∑

j′∈J D
Energy
j′

(6.1)

with DEnergy
j the electrical energy demand of consumer j.

The vector e contains the share of unreliability in the total unreliability for
each consumer j in terms of a Reliability Indicator (RI):49

ej = RIj∑
j′∈J RIj′

(6.2)

with RIj the reliability indicator of consumer j expressing its reliability level.

The following conditions need to be satisfied for vectors w and e:∑
j′∈J

wj =
∑
j′∈J

ej = 100% (6.3)

47In this work the term ‘inequality ratio’ is used for all specifications.
48In this definition, the inequality amongst consumers is used, but similar formulations can

be used on substation or regional levels.
49The set of reliability indicators that is applicable in the inequality ratio is not limited to

the ones proposed in this work.
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wj = 0 =⇒ ej = 0 (6.4)

The first condition (6.3) guarantees that all demand and all unreliability is
distributed over all consumers, while the second condition (6.4) states that
consumers without electricity demand cannot suffer interruptions that cause
unreliability.

A distribution of reliability is considered to be fair if all consumers contribute
to the unreliability according to their share in total demand:

ξj = 1,∀j ∈ J with ξj = ej
wj

= inequality ratio (6.5)

If the distribution is not perfectly equal, some consumers j are more (ξj > 1)
or less affected (ξj < 1).

6.1.2 Equality versus Equity

Different reliability indicators can be applied in the inequality ratio. Depending
on the applied reliability indicator, the definition of the ratio inclines more
towards equality or equity.

Firstly, inequality can be defined in terms of energy not supplied. The inequality
ratio in this case equals:

ξENSj = ENSj∑
j′∈J ENSj′

·
∑
j′∈J D

Energy
j′

DEnergy
j

(6.6)

This implies that a set of consumers is considered to be treated equally if
their share in total energy not supplied equals their share in total demand,
irrespective of their characteristics. Depending on whether the index is used in
an ex-ante or ex-post evaluation, resp. Expected Energy Not Supplied (EENS)
for a set of events or Energy Not Served (ENS) for a single event or a sequence
of events is used.

Inequality can also be defined in terms of total cost borne by consumers Cconsj ,
i.e., the interruption cost due to load curtailment, received compensations and
payments made in the context of a compensation scheme:

ξcostj =
Cconsj∑
j′∈J C

cons
j′

·
∑
j′∈J D

Energy
j

DEnergy
j

(6.7)

This definition of equality implies that a consumer is treated fairly, if its share
in the total cost borne by all consumers equals its share in total demand, i.e.,
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consumers with a higher demand have more costs. This definition can be usefully
applied to verify the effectiveness of a compensation scheme.

Alternatively, equality can be formulated in terms of interruption cost.
Interruption costs are the product of a consumer’s energy not supplied ENSj
and his/her value of lost load vj . This formulation states that interruption
costs are distributed fairly if the share of each consumer in the interruption
cost equals its share in total demand. The inequality ratio in this case equals:

ξICj = ENSj · vj∑
j′∈J ENSj′ · vj′

·
∑
j′∈J D

Energy
j′

DEnergy
j

(6.8)

This definition of equality is closer to equity of reliability, because VOLL is
correlated with need and desert. However, VOLL is not fully correlated with
need and desert. For example, poor households may be more in need of reliable
electricity supply, but will typically have a lower VOLL than rich households.
On the contrary, it makes sense to provide a higher reliability level to hospitals
or high VOLL industry. Fairness is a combination of equity and equality, so
that the specifications of the inequality ratio are complementary [182].

An interpretation of the difference between equality and equity in terms of power
system reliability for a set of consumers with equal demand, but different values
of lost load is illustrated in Fig. 6.1. A set of consumers with equal demand is
considered to be treated equally if all consumers have the same amount of load
curtailment. The equity amongst consumers in terms of unreliability is ensured
if the interruption cost is equal for all consumers, i.e., P curtj · vj = Constant.
This means that consumers with a higher value of lost load will have a lower
level of load curtailment. If consumers have different demand levels, their
relative amount of interruption cost should be proportional to their demand
share, whereas the amount of load curtailment will be inversely proportional to
their value of lost load in a more equitable case.

6.2 An Inequality Index for Power System Reliabil-
ity

Many different inequality indices have been proposed in the economic literature.
These indices are used to compare income distributions between countries or
to verify the impact of certain decisions, such as the introduction of a tax on
the distribution of income within a certain country. These indices have been
applied to insurance [183], education [184] and biodiversity [185]. Based on the
definition of equality provided in the previous section, this section develops an
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Figure 6.1: Difference between equality and equity in a power system reliability
context for consumers with different VOLL but equal demand DEnergy

j .

inequality index, which enables the quantification of inequality and inequity of
power system reliability in a single value.

6.2.1 Inequality Indices

Various inequality indices are reported in the literature: the variance, the
coefficient of variation, the relative mean deviation [178], the standard deviation
of logarithms, the 20:20 ratio, the Palma ratio, Theil’s index [186], the Atkinson
index [179], the Schutz or Hoover index [187] and the Gini index [188]. The
strengths and weaknesses of each of these indices have been studied extensively
in the economic literature. For example, the variance is not scale invariant50
and the relative mean deviation fails to satisfy the principle of transfers.51 In
addition, the inequality indices differ in their sensitivity to transfers: the Palma
ratio and the 20:20 ratio particularly focus on the extremes of the distribution,
whereas the Gini index focuses on the middle of the distribution [188, 189].

A perfect inequality index does not exist, but the Gini index is the most widely
used. One of the reasons for its popularity is that it is easy to understand how
to compute the Gini index based on Lorenz curves.

50Scale invariance ensures that if everyone’s reliability level or demand is multiplied by a
constant value, the degree of inequality remains unchanged [188].

51The principle of transfers states that a transfer in the share of reliability ∆e from a
consumer j to a consumer j′ should decrease the value of the inequality index if ξj > ξj′ and
ej−∆e
wj

≥
ej′+∆e
wj′

[178].
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Figure 6.2: Lorenz curve in terms of power system reliability. The line of
equality is dotted.

6.2.2 Lorenz Curves

The distribution of reliability between consumers can be represented in a Lorenz
curve. A Lorenz curve plots the cumulative share of demand Wz with respect
to the cumulative share of unreliability Ez, with all consumers ranked according
to an increasing inequality ratio ξj . The inequality ratio represents the slope of
the different pieces of the piecewise-linear Lorenz curve. This is shown in Fig.
6.2.

If the distribution of reliability is completely fair (i.e., when ξj = 1 ∀j ∈ J ),
the Lorenz curve is a straight line with coefficient of direction equal to 1, as
illustrated by the dotted line in Fig. 6.2. If the distribution of reliability is not
completely fair, the Lorenz curve will be below the equality line, as illustrated
by the bold line in Fig. 6.2. The closer the Lorenz curve is to the equality line,
the more equal the distribution of reliability.

6.2.3 The Gini-based Inequality Index of Power System
Reliability

The proposed Gini-based inequality index of power system reliability U is
defined as the ratio of the surface area between the line of equality and the
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Lorenz curve (A) over the total surface area under the line of equality (A+B):

U = A

A+B
(6.9)

Surface area B can be calculated using the surface areas of the trapezoids
under each of the pieces of the piecewise-linear Lorenz curve. This leads to the
following formula for U :

U = |1−
J∑
z=1

(Wz −Wz−1)(Ez + Ez−1)| (6.10)

with Wz the cumulative proportion of relative demand (Wz =
∑z
j=1 wj ∀z =

1..J , W0 = 0 and WJ = 1) and Ez the cumulative proportion of relative
unreliability (Ez =

∑z
j=1 ej ∀z = 1..J , E0 = 0 and EJ = 1). The consumers j

are ranked such that ξj ≤ ξj+1.

The proposed index summarizes inequality as a value between zero and one. A
value of zero means that unreliability is distributed equally among all consumers.
The closer the inequality index is to one, the more unreliability is limited to a
few consumers.

6.2.4 Characteristics of the Proposed Inequality Index

The main strength of an inequality index is that the extent of inequality is
summarized as a single value between zero and one. This enables a simple
assessment of the perceived fairness of power system decisions. The index is
particularly useful in comparison with a well-known reference case or to compare
the performance of different power system decisions, because it is difficult to
attribute a practical meaning to a particular value of the index due to lack of
practical experience. Aggregating the distribution of reliability into a single
value reduces the informational content. Two very different distributions of
unreliability can have the same index value and the index does not capture where
the inequality actually occurs in the distribution. However, complemented with
the inequality ratios ξj calculated per consumer j, a lot of information can be
obtained more easily than based on the original data. Although the position of
each consumer with respect to the equality situation cannot be directly derived
from the inequality index, it can be obtained based on the inequality ratios ξj
calculated per consumer j.
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6.3 Case Study I: Controlled Load-Shedding Plans

TSOs with insufficient generation or transmission capacity have the capability
and authority to carry out controlled load shedding to prevent uncontrolled
failures and blackouts. For example, NERC requires American balancing
authorities and transmission operators to have automatic under-frequency load-
shedding plans [190] and manual load-shedding plans [191], whereas ENTSO-E
requires European TSOs to have automatic under-frequency control schemes
[192]. TSOs are free to choose which loads to shed in case of emergency, except
for high priority significant grid users who should never be shed. However,
TSOs generally choose a subset of consumers, which creates public concerns,
because people might feel unequally treated.

This case study examines the load-shedding plan that was proposed by the
Belgian TSO for the winter 2014-2015.52 Public opposition to this plan was
large, because people felt that the burden of the load-shedding fell on a subset
of consumers, while at the same time the benefits accrued to all consumers.
This section calculates the inequality index of the load-shedding plan. Moreover,
it is illustrated for a basic compensation scheme how to assess the effectiveness
of compensation schemes to reduce inequality in terms of the consequences of
unreliability.

6.3.1 Data and Assumptions

The Belgian load-shedding plan for the winter of 2014-2015 divided Belgium in 5
zones and each zone was further divided into 6 slices.53 Each slice corresponded
to 520 MW of sheddable power, resulting in a total foreseen sheddable load of
3120 MW, as summarized in Fig. 6.3. During load shedding, one of these slices
of 520 MW is disconnected for around 3 hours according to a rotation system.
Slices within a particular zone are determined based on their geographical
location to guarantee geographical spreading, and on their value of lost load
(VOLL), as rural areas with lower population density and less critical electrical
equipment are preferred above urban areas.

Total system load is assumed to be 13120 MW, which means that 10 GW of
load is never affected. These consumers are considered to be in slices 7’ and 7”.

52At that time, Belgian system adequacy was low due to retirement and mothballing of
conventional power plants, supplemented by the unforeseen closure of three large nuclear
units as a result of indications of micro-cracks in the reactor vessels.

53A recent update of the load-shedding plan uses 8 slices each corresponding to 500 MW
up to 750 MW instead of 6 slices of 520 MW [78].
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Slices NW NE CE SW SE TOTAL

1 130 130 130 65 65 520 MW
2 130 130 130 65 65 520 MW
3 130 130 130 65 65 520 MW
4 130 130 130 65 65 520 MW
5 130 130 130 65 65 520 MW
6 130 130 130 65 65 520 MW

7’ 8000 MW
7” 2000 MW

TOTAL 13120 MW

Figure 6.3: The division of Belgium into zones and slices for the load-shedding
plan in the winter of 2014-2015 (Data: ELIA).

Slice 7’ represents densely populated areas with 8 GW of low-VOLL consumers,
whereas slice 7” represents 2 GW of critical high-VOLL consumers.54

6.3.2 Results

Table 6.1 gives demand share and ENS share per slice, resp. w and e, and the
inequality indicator UENS between the slices of the controlled load-shedding
plan after 1 up to 6 geographical rotations. That is, e6 is calculated based on
the aggregated ENS after 6 rotations, assuming that each time a different slice
is affected. Power demand and load curtailment are assumed to last for a fixed
time period ∆t, i.e., DEnergy

j = P loadj · ∆t with P loadj the power demand of
consumer j [MW] and ENSj = P curtj ·∆t with P curtj the load curtailment of
consumer j [MW]. Only consumers with similar characteristics are considered in
the calculation of UENS , i.e. slice 7” is omitted. From Table 6.1, it is clear that,
under the given assumptions, inequality decreases if load shedding is applied
more often. Rotation between the different slices implies that those consumers
who have been treated very unfairly with the first action receive a favorable
treatment in the next one. However, because a large share of demand remains
unaffected (slice 7’), inequality is still high, i.e., UENS close to 1, even after
shedding each of the 6 slices once.55

54These assumptions are a simplification of the real situation to obtain an illustrative case
study. In reality, consumers in different slices are more diversified and more subgroups can be
considered in the different slices, especially in the unaffected slice 7.

55It should be noted that the effect on the inequality in the case studies can be considered
as a marginal effect. Depending on the initial distribution of reliability, some decisions
might make the overall distribution of reliability more equal. In a practical setting, the
effect of decisions on the existing distribution of unreliability should be assessed. The initial
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Table 6.1: UENS after 1 up to 6 rotations of the controlled load-shedding plan
proposed in Fig. 6.3, only considering consumers with similar characteristics.

Slice
j w e1 e2 e3 e4 e5 e6

1 0.047 1 0.5 0.333 0.25 0.2 0.167
2 0.047 0 0.5 0.333 0.25 0.2 0.167
3 0.047 0 0 0.333 0.25 0.2 0.167
4 0.047 0 0 0 0.25 0.2 0.167
5 0.047 0 0 0 0 0.2 0.167
6 0.047 0 0 0 0 0 0.167
7’ 0.719 0 0 0 0 0 0
UENS 0.95 0.91 0.86 0.81 0.77 0.72

Although it is difficult to obtain equality of reliability between consumers in
the practical application of load-shedding plans, it is possible to distribute the
economic consequences of the activation of load-shedding plans more equally
over all consumers in the system. A practical measure is to compensate affected
consumers. If (part of) the economic burden is shared by all consumers,
consequences of an interruption will be distributed more equally. However,
the exact interruption cost per consumer is hard to determine and the use of
a fixed price might result in over- or undercompensation, depending on the
consumer and the level of compensation.

Table 6.2 shows the impact of compensating affected consumers based on
the amount of energy not supplied. The compensation per MWh equals a
percentage of the weighted average VOLL of the affected consumers, ranging
from no compensation up to a compensation equal to 100% of the weighted
average VOLL. The weighted average is equal to V comp =

∑
j∈J ej · Vj . The

economic burden of the compensation is shared between all consumers and is
divided according to their demand share, for example through energy-based
transmission tariffs. In this illustrative case, the VOLL of the affected consumers
is assumed to be equal. The inequality index is calculated using Eq. (6.7).
Inequality can be significantly reduced if a compensation scheme is put in place,
even in the case of partial compensation. 100% compensation results in complete
equality under these assumptions. However, if VOLL differs between consumers
in the affected slices and interruptions are compensated at average VOLL, some
consumers will be over-compensated, whereas others will be under-compensated,
resulting in a remaining level of inequality between the consumers.

distribution of reliability among consumers in the case studies in this dissertation is assumed
to be equal.
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Table 6.2: Evolution of inequality in terms of net total cost borne by the
consumers U cost as a function of the number of rotations and the relative
amount of compensation.

Rotations
Compensation 1 2 3 4 5 6

0% 0.95 0.91 0.86 0.81 0.77 0.72
30% 0.70 0.66 0.63 0.60 0.56 0.53
50% 0.52 0.49 0.47 0.44 0.41 0.39
80% 0.22 0.21 0.20 0.19 0.17 0.16
100% 0 0 0 0 0 0

6.4 Case Study II: Comparison of Short-Term Reli-
ability Management Approaches and Criteria

TSOs and policy makers are typically interested in potential overall efficiency
gains or total system cost savings when changing their reliability management
approach and criterion. However, social acceptance is crucial to practically
deploy an alternative RMAC. One of the aspects on which the social acceptability
of an RMAC can be judged is the inequality between consumers in terms of
reliability. This case study illustrates the assessment of the inequality between
consumers in terms of reliability based on the inequality indices UENS and
U IC in a comparative study of two short-term RMACs: (a) the deterministic
N-1 criterion and (b) a probabilistic approach aiming at the minimization of
expected total system cost.

6.4.1 Data and Assumptions

Two decision stages are considered in short-term reliability management: day-
ahead operational planning and real-time operation. The N-1 criterion aims at
securing all single branch and generator outages and the N-0 state given the
forecast of net demand. All states are considered as equally probable and equally
severe. The probabilistic approach on the contrary aims at minimizing the
expected total system cost taking into account the most probable contingencies
up to a cumulative probability of 99% and 7 possible realizations of net total
demand. The probabilistic approach takes into account that VOLL differs
between consumer groups and over time [193].

Performance evaluation of the two RMACs is executed using an analytical
non-sequential state enumeration technique. Operational planning is simulated
for a set of time instances for which forecast values of net total demand are
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given. For simplification, the set of time instances consists of 6×3×4 = 72 time
instances, representing 6 periods in the year (winter, early spring, late spring,
summer, early autumn and late autumn), 3 types of days (weekday, Saturday
and Sunday) and 4 times of the day (night, morning, noon and evening). The
outcomes of the different time instances are weighted by their probability of
occurrence [193]. In a second step, corrective control is simulated for a set of
real-time realizations that are conditional upon the operational planning state.
This set is the Cartesian product of the most probable contingencies up to a
cumulative probability of 99.6% and 11 possible real-time realizations of net
total demand.56 The realizations are derived from a normal distribution with
mean equal to the forecast value of net total demand at the corresponding time
instance and a coefficient of variation of 4%.57

The simulation of preventive and corrective control is executed using a DC
security constrained optimal power flow (SCOPF) in which generation redispatch,
branch switching, phase-shifting transformer tap changing and load curtailment
are considered as available actions [194]. The simulations are executed using
a MATLAB implementation [63] interfacing with the DC SCOPF, which is
implemented in AMPL [126].

A five-node network, based on the Roy Billinton Reliability test system [195],
is used.58 VOLL data for Norway are applied [196] and two consumer groups
(residential and non-residential) are distinguished. Detailed data about the test
system and the VOLL data can be found in resp. Appendix D and Chapter 7.

6.4.2 Results

Evaluating the inequality between consumers is not straightforward if no clear
definition and summary measure of inequality exist. Nowadays, equality is
typically assessed based on the distribution of energy not supplied among
different nodes or consumers [13]. Fig. 6.4 shows the share of ENS per node
if an N-1 criterion and probabilistic RMAC are applied. Based on these data,

56The numbers of realizations considered in the probabilistic decision making and the
performance evaluation are not optimized. The number of realizations considered in the
evaluation is larger than in the decision making, because the performance evaluation should
favorably use a more detailed representation of the forecast uncertainty to verify the impact
of the assumptions made in decision making. The realizations in probabilistic decision making
and performance evaluation are symmetrically and equidistantly chosen around the forecast
value, with a maximal deviation of +/-3σ.

57Forecast uncertainty of demand can be represented as a multivariate normal distribution
with the mean equal to the forecast value and an appropriate coefficient of variation, as
indicated in [122].

58To serve the illustrative purpose of this case study, a five-node test system is used. The
index can similarly be applied to larger systems.



112 INEQUALITY AND INEQUITY OF POWER SYSTEM RELIABILITY

it is difficult to decide which of the two RMACs results in the highest level
of inequality and to quantify the difference, even for this small five-node test
system. This type of analysis does not take into account the share of demand
at each node, which should be naturally related to the share of ENS in an
inequality assessment. Fig. 6.4 illustrates the need for an adequate definition
of inequality as well as a summarizing measure that facilitates the comparison
between different reliability decisions and reliability management approaches.
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Figure 6.4: The share of energy not supplied per node if the N-1 and probabilistic
reliability management approach are applied.

Fig. 6.5 shows the Lorenz curves of inequality between consumers at different
nodes (UENSnode ) for both RMACs. This figure clearly shows that inequality
is higher with the probabilistic RMAC (UENSprob,node = 0.57) than with the
deterministic N-1 reliability criterion (UENSN−1,node = 0.11). The probabilistic
approach exploits the differences in VOLL between consumer groups and over
time, whereas the N-1 approach does not. As a result, the probabilistic approach
leads not only to a higher level of inequality of reliability, but also to lower
socio-economic costs (64% lower in this case study).

Part of the efficiency gains can be used to decrease public opposition to the
higher inequality of reliability. Fig. 6.6 identifies the most unfairly treated nodes
by plotting the inequality ratios ξENSj . This figure shows that consumers from
nodes 4 and 5 have a disproportionately low reliability level with the probabilistic
RMAC, which means that they should be remunerated or safeguarded against
other reliability-decreasing decisions. Based on Fig. 6.4, it might be concluded
that node 3 is unfairly treated if the N-1 approach is applied. However, Fig.
6.6 indicates that node 3 has a fair level of ENS taking into account its higher
demand share. The proposed methodology to evaluate inequality assesses this
information in a transparent way.

On top of the inequality between nodes (UENSnode ), the index can also be calculated
for inequality between different consumer groups (UENScg ) or between individual
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Figure 6.5: Lorenz curves for inequality between nodes in terms of expected
energy not supplied for the two reliability management approaches compared
to the line of equality.
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Figure 6.6: Inequality ratios per node for probabilistic reliability management
and reliability management based on the N-1 criterion.

consumers (UENS). Inequality ratios ξENSg per group g, i.e., per node for UENSnode

or per consumer group for UENScg , equal:

ξENSg =
∑
j′∈Jg

ENSj′∑
j∈J ENSj

·
∑
j∈J D

Energy
j∑

j′∈Jg
DEnergy
j′

(6.11)

with Jg the subset of consumers belonging to group g. Calculating inequality
between individual consumers is hard in practice, because exact energy not
supplied and demand per consumer are not available to TSOs. They only have
estimations or nodal values. However, by grouping consumers per node (UENSnode )
or per consumer group (UENScg ), the Lorenz curve is an approximation of the
Lorenz curve that considers all consumers individually. This is graphically
illustrated in Fig. 6.7. Table 6.3 shows that this approximation of the
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Lorenz curve results in lower values of the inequality indices UENSnode and
UENScg , quantifying the inequality between nodes and between consumer groups
respectively, compared to UENS , which considers different consumer groups at
different nodes. Individual inequality is always understated if aggregation is
used. Nevertheless, the conclusion remains unaffected that the probabilistic
RMAC leads to higher inequality than the deterministic approach in this case
study, whatever the compared groups.
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Figure 6.7: Impact of grouping consumers per node (UENSnode ) or per consumer
group (UENScg ) on the Lorenz curves.

Table 6.3: Inequality between nodes UENSnode , between consumer groups UENScg and
between individual consumers UENS for the two types of reliability management.

Probabilistic N-1

UENSnode 0.57 0.11
UENScg 0.61 0.05
UENS 0.75 0.35

Lastly, even if data is available at the level of individual consumers, it makes
sense to calculate the inequality between nodes or between consumer groups.
Consumers’ perception of their peers influences which groups need to be
considered in the calculation of the inequality index. If consumers are concerned
about equality between consumer groups (e.g., residential and non-residential),
the inequality index UENScg should be used. If they are more concerned about
equality between individuals, irrespective of their consumer group, the inequality
index UENS should be used. Similarly, the inequality index can also be
calculated within groups, such as the inequality between residential consumers
or between non-residential consumers, as shown in Table 6.4. This table shows
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that for the presented case study the inequality between residential consumers
does not increase much when moving from the N-1 criterion to the probabilistic
RMAC, while it increases more between non-residential consumers. These
conclusions show where to put the focus if actions should be taken, but they
are hard to make without the use of an inequality index as the one proposed in
this dissertation.

Table 6.4: Inequality UENS between consumers in the two considered consumer
groups for the two reliability management strategies.

Consumer groups
Residential Non-residential

Prob. 0.38 0.66
N-1 0.32 0.30

Besides the inequality, the inequity of the two RMACs can be assessed.
The probabilistic RMAC results in an index U IC = 0.73, whereas for the
deterministic N-1 criterion U IC = 0.54. The difference in inequity between
the probabilistic and deterministic RMAC is smaller than the difference in
inequality. However, inequity is still higher for the probabilistic RMAC than
for the deterministic N-1 criterion. This is the case, because the probabilistic
RMAC will always try to curtail the consumers with the lowest VOLL rather
than aiming at equitable load curtailment. This means that the interruption
cost is borne by a reduced set of consumers.

6.5 Case Study III: Electricity Reliability in Norway

The Norwegian Water Resources and Energy Directorate (NVE) has been
collecting detailed reliability data since 1995 using the FASIT tool [197]. All
Norwegian transmission and distribution network operators are required to
report the consequences of each outage. Based on the reported interruption
time period of each affected consumer type, the tool calculates the interruption
duration, interrupted power, ENS and interruption cost for each consumer type
at each location. The resulting reliability data are published every year for six
voltage levels, 19 counties, 117 network operators and 36 consumer groups [198].
The remainder of this section takes a closer look at the distribution of reliability
in different counties and among consumer groups in Norway.
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6.5.1 Distribution of Reliability between Counties

The distribution of unreliability among different counties is hard to evaluate by
decision makers based on detailed reliability data. Fig. 6.8 shows the share in
total ENS of each of the counties for the 11 years. Based on this figure, one
might conclude that unreliability is distributed quite equally among countries
in the different years, except for some years in counties 12, 14 and 17. However,
this analysis does not take into account the relative electricity consumption of
each of the counties, which is an important factor to determine the equality of
the distribution of unreliability.
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Figure 6.8: Detailed reliability data for the 19 Norwegian counties in 2006-2016
in terms of share in total ENS (Original data: [198]).

Fig. 6.9 shows the inequality ratio ξENSj for each county j for 2006 to 2016. This
figure shows that some rural areas have an inequality ratio above one, meaning
that they have a relatively high level of ENS. On the contrary, inequality ratios
are below one in the more urban southern counties, notably Oslo (3) and its
surroundings. The peaks in this figure are more pronounced and the inequality
of the distribution of unreliability in terms of ENS is illustrated more clearly.

The reliability level differs between counties and its distribution differs over
time. Evaluating the evolution of inequality in terms of reliability is only
possible by aggregating the information into a single value. Fig. 6.10 shows the
evolution of the inequality index UENS of the distribution of reliability between
counties. This figure shows that inequality was high in 2011, 2013 and 2015.
The inequality does not show a particular upward or downward trend, which
makes sense as inequality is not a policy objective at the moment.
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Figure 6.9: Inequality ratios ξENSj for the 19 Norwegian counties in 2006-2016
(Original data: [198]).
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Figure 6.10: Inequality index UENS between Norwegian Counties in 2006-2016
(Original data: [198]).

6.5.2 Distribution of Reliability between Consumer Groups

The Norwegian data also enable the assessment of the inequality of the
distribution of reliability between consumer groups. Fig. 6.11 shows the
inequality ratio ξENSc for each consumer group c for 2012 to 2016. This figure
shows that agricultural and residential consumers have an inequality ratio above
one, meaning that they have a relatively high level of ENS. Industry and large
industry have the lowest inequality ratio.

Similarly, Fig. 6.12 shows the inequality ratio ξICc , based on interruption
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Figure 6.11: Inequality ratios ξENSc for the six consumer groups in 2012-2016,
based on energy not supplied (Original data: [198]).

costs, for each consumer group c for 2012 to 2016. This figure shows that the
interruption cost of large industry is relatively low, whereas the interruption
cost of commercial consumers is relatively high.

The analysis of both figures shows that large industry receives a favorable
treatment, both in terms of energy not supplied and interruption cost. Although
agriculture has a relatively high level of ENS, its low VOLL makes that it is on
average fairly treated in terms of interruption cost. Commercial consumers are
on average fairly treated in terms of ENS, but are on average highly unfairly
treated in terms of interruption cost.

Fig. 6.13 shows that in Norway there was no particular trend in the inequality
between consumer groups in 2012-2016 expressed in terms of UENS and U IC .
Again, this makes sense as inequality is not a policy objective at the moment.
Fig. 6.13 also shows that the values of the inequality indices depend on the
level of consumer aggregation. The indices increase if the six consumer groups
are disaggregated into 36 groups.
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Figure 6.12: Inequality ratios ξICc for the six consumer groups in 2012-2016,
based on interruption costs (Original data: [198]).
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Figure 6.13: The evolution of inequality indices UENS and U IC for different
levels of aggregation of consumers, i.e., 6 groups ( ) and 36 groups ( )
(Original data: [198]).
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6.6 Discussion

The proposed inequality indices enable system stakeholders to quantify the
inequality between consumers in terms of reliability and to take action if the
inequality is unacceptable from a social perspective. Modern technologies and
contractual evolutions provide measures to influence the inequality between
consumers, but society’s preferences in terms of fairness should be clearly stated
to make effective decisions.

6.6.1 Towards a Practical Inequality Assessment

An effective application of the inequality assessment requires that the authorities
and regulatory agencies determine society’s preferences regarding certain aspects.
First, the definition of fairness should be clearly expressed: Equality, i.e.,
everyone gets the same level of reliability, deservedness, i.e., everyone gets what
he/she merits, or need, i.e., those that have more to give should give a greater
percentage of what they have to help others who are unable to contribute much.
Different definitions are typically complementary. Second, it is important to
determine consumers’ perception of their peers as this determines the aggregation
applied in the inequality assessment. Third, society’s preferences in terms of
the acceptable level of inequality should be clearly stated to obtain thresholds
that define socially acceptable decisions.

6.6.2 Reducing Inequality

If the inequality index shows that the distribution of unreliability among
consumers is highly unequal, measures can be taken to reduce this inequality.
This is possible based on the principle of transfers [178]. This principle states
that a transfer ∆e of the share of unreliability from a consumer j to a consumer j′
decreases the value of the inequality index if ξENSj > ξENSj′ and ej−∆e

wj
≥ ej′+∆e

wj′
.

This requires a more detailed study to see which consumers are mostly affected
in a positive and negative way. Based on this study, the TSO can decide to
safeguard the most affected consumers if load curtailment is required in the
future.

From a socio-economic perspective it might be better to have a certain level of
inequality, e.g., in systems with remote and sparsely populated load points. In
this case, it is not economically viable to have the same level of redundancy for
these remote load points as for a densely populated area. This decision might
result in a higher share of energy not supplied in these remote load points. A
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cost-effective way to reduce the level of inequality in this case might be to invest
in small, local generation or storage units, possibly (partly) subsidized. Other
options are a market for reliability or end-consumer contracts where the price
depends on the reliability level. Bi-lateral interruptible load contracts between
TSOs and large industrial consumers with flexible processes are already in place
nowadays, but they might be extended to include smaller consumers as well.
These kinds of economic compensations result in a more equal distribution of
the cost of unreliability, whereas the inequality in terms of energy not supplied
is not changed. Also the equity between consumers will improve, as consumers
can indicate what they need with these reliability-based electricity consumption
choices. Smart grids with smart metering and demand-side management can
help in this respect.

To obtain satisfactory results, the design of these measures should be done with
care. This requires a multi-faceted analysis. Moreover, the exact determination
of interruption costs is challenging, which makes it hard to determine an
adequate compensation for affected consumers. Not only are energy not served
and demand per consumer hard to obtain, also exact values of lost load per node
or per consumer are rarely available in practice. However, the Fourth Energy
Package of the European Commission prescribes that all member states have to
establish at least a single estimate of VOLL for their territory and can establish
a VOLL per bidding zone, if they have several ones. In many other regions such
obligation does not yet exist, but more and more studies are estimating VOLL
with a higher level of detail, taking into account differentiation in terms of type
of consumers, time and duration. An overview of these studies can be found in
Chapter 7.

6.7 Conclusion

A fair distribution of power system unreliability is crucial to reduce public
opposition against adequacy and security measures, such as the introduction
of an alternative reliability management approach and criterion. It is one of
the aspects to ensure their social acceptability. The proposed inequality indices
evaluate the distribution of reliability among different entities, such as nodes,
consumer groups or individual consumers, but can also be used to evaluate
equality in terms of generator connectivity. They quantify inequality of power
system reliability resulting from network operators’ and regulators’ decisions
in a single value. This enables stakeholders to assess the level of inequality
and inequity between different entities in a more transparent way. Regulating
bodies and transmission system operators can usefully apply the indices to
assess decisions in the context of system adequacy, security, investment, etc.
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This work has illustrated the application in three case studies, focusing on load-
shedding plans, the evaluation of short-term reliability management approaches
and criteria and the analysis of Norwegian reliability data.

Modern technologies, such as smart meters, and contractual evolutions provide
measures to influence the inequality between consumers, either directly or
indirectly by redistributing the consequences of unreliability. The effectiveness
of these measures can be verified using the proposed inequality indices.



Chapter 7

Impact of Value of Lost Load
on the Performance of
Short-Term RMACs

Short-term reliability management based on socio-economic principles, which
makes a trade-off between preventive, corrective and load curtailment actions,
should take into account the cost of interruptions for end-consumers. The cost
of electricity interruptions is determined by the amount of energy not supplied
and the value of lost load (VOLL). VOLL is a parameter representing the cost
of unserved electricity and is generally expressed in monetary units per kWh or
MWh. It is an essential parameter to determine the optimal reliability level of
a power system.

Various studies have estimated VOLL for different countries and for different
interruption characteristics, such as interruption duration, time of interruption,
interrupted consumer, location and advance notification. Better-informed
reliability decisions are possible by using these detailed VOLL data. The impact
of using different degrees of VOLL detail in short-term reliability management
is assessed. A theoretical model that shows the efficiency gains – defined as the
(relative) cost decrease – of using a VOLL that differs over time and between
consumers is developed. Realizing the full efficiency potential of consumer-
differentiated VOLL depends on the technological curtailment possibilities.
A distinction is made in this study between perfect curtailment, random
curtailment and spatial curtailment – an intermediate option where a network
operator curtails load in regions depending on their VOLL. The theoretical

123
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model is illustrated using the quantification framework discussed in the previous
chapters focusing on expected total system cost of TSOs’ operational planning
and system operation using different levels of VOLL detail. In addition, it
is studied how VOLL differentiation impacts the distribution of unreliability
between different consumers.

Section 7.1 discusses the current use of value of lost load data. Section 7.2
surveys the growing literature that estimates VOLL as a function of different
interruption characteristics for different countries. VOLL data of Norway, Great
Britain and the United States are discussed in more detail. Section 7.3 studies
analytically the efficiency gains of using a VOLL that differs over time and
between consumers. Section 7.4 expands this analysis to a five-node illustrative
network and analyzes the trade-off between efficiency and equality in terms of
reliability if different levels of VOLL detail are used. Section 7.5 discusses the
findings of the analyses. Section 7.6 concludes.

This chapter is based on the discussion paper How detailed value of lost load
data impact power system reliability decisions: a trade-off between efficiency
and equity, Ovaere M., Heylen E., Proost S., Deconinck G. and Van Hertem D.,
Discussion paper series, DPS16.26 KU Leuven, Department of Economics.59

7.1 Current Use of Value of Lost Load

VOLL is used in many applications such as load curtailment contracts [199],
network investment decisions [200], cost-benefit analyses, quality incentive
schemes of transmission and distribution networks [201], energy legislation and
reliability standards60 [203]. Most of these applications simplify the VOLL to a
single, constant value.

The most advanced use of detailed VOLL data to date is the Norwegian Cost
of Energy Not Supplied (CENS) regulation. In the CENS regulation, TSO and
DSO revenue caps depend on the interruption costs in their area. Interruption
costs are calculated for different consumer groups and both the time and
duration of interruptions have an effect on interruption costs [204]. The CENS
regulation is expected to give network operators better incentives to achieve an
optimal reliability level, for example, by providing a higher level of reliability

59The first two authors are the main authors of this paper and contributed equally to this
study. The contributions of the second author include the modeling and simulation of the
case study and the post-processing of the results of the case study. The discussion of the
impact of the level of detail of VOLL is the result of a collaboration between the first two
authors.

60In Great Britain, a loss of load expectation (LOLE) of 3 hours per year corresponds to a
VOLL of £17 000 /MWh [202].
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to high-VOLL consumers or at high-VOLL moments – e.g., by taking more
conservative operating decisions or speeding up restoration times. In the Italian
quality regulation of distribution networks, VOLL of residential consumers is
set at e10800 /MWh, whereas VOLL of non-residential consumers is set at
e21600 /MWh [205]. Interruptions of non-domestic consumers are thus more
costly and therefore network operators have an incentive to provide them a
higher level of reliability. However, apart from being used in reliability incentive
schemes, available detailed VOLL data are not widely used in reliability decision
making.

7.2 Literature Review of Detailed VOLL Data

VOLL depends on many factors [206]:

• Interruption time: season, day of the week, time of the day;

• Interrupted consumers: residential, commercial, industrial, public;

• Interruption duration;

• Weather at the time of interruption;

• Number of consumers affected;

• Current reliability level;

• Advance notification of the interruption;

• Mitigating measures.

Various empirical studies have estimated VOLL as a function of these different
factors. Table 7.1 lists 13 studies and shows the level of VOLL detail for each
study.61 The table shows that almost all studies estimate VOLL for different
consumer types. Some consider as much as 15 consumer types [207, 208, 209,
210], while others consider only two or three [200, 211, 212]. Many studies
also include the influence of the interruption time on VOLL. Most of them
distinguish between time of the day, type of day in the week and season. In
addition, some studies estimate the influence of interruption duration, advance
notification and location.

61The survey is restricted to studies published since 2007 that estimate the effect on VOLL
of at least two interruption characteristics.
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Table 7.1: Studies that estimate VOLL as a function of different interruption
characteristics.

Country Consumer
type Time Duration Advance

notification Location Source

Australia x x [213]
Austria x x x [208]
Cyprus x x [210]
Germany x x [207]
Great Britain x x [212]
Ireland x x x [214]
Netherlands x x x [215]
New Zealand x x x x [200]
Norway x x x x [196]
Portugal x x [216]
Spain x x [209]
Sweden x x [217]
United States x x x x x [211]

As an illustration, Table 7.2 to Table 7.4 present detailed VOLL data of Great
Britain [212], Norway [196] and the United States [211]. These data show VOLL
for different consumer groups as a function of season, type of day, and time of
the day. The Norwegian data consider four consumer types (residential, industry,
commercial, and public) and 36 interruption times (three times of interruption,
three days and four seasons). The British data consider two consumer types, i.e.,
residential consumers and Small and Medium Enterprises (SMEs), and eight
interruption times. Finally, the United States’ data consider three consumer
types, i.e., residential consumers, small Commerce and Industry (C&I) and
large C&I, and 16 interruption times. All data are expressed in both the home
currency and in e2015/MWh.62 All three studies use stated-preference methods
to determine the VOLL data.63 Comparison of VOLL between countries should
be done with care [222] since all stated-preference methods differ to some extent
in terms of formulation of questions, cost normalization factors, scenario designs
and data formats and since countries differ culturally.

The British and United States data show VOLL as a single value for each time
of interruption. The Norwegian data are displayed differently. Table 7.3 shows
multipliers for the time of the day, type of day and season. Norwegian VOLL
for a particular time is found by multiplying the standard VOLL with the

62Purchasing power parities [218] are used for conversion.
63Stated-preference methods involve asking consumers their Willingness-To-Accept (WTA)

payment for an outage andWillingness-To-Pay (WTP) to avoid an outage (contingent valuation
or choice experiments), or asking the cost of specific interruptions (direct worth). Several
cost estimation methods exist, each of them having its advantages and disadvantages [215].
Best-practice guidelines provide recommendations for correct VOLL estimation [219, 220, 221].



LITERATURE REVIEW OF DETAILED VOLL DATA 127

corresponding multipliers:64

vc(t(h, d, y)) = vc · γh,c · γd,c · γy,c (7.1)

vc corresponds to the base VOLL per consumer group c and γh,c, γd,c and γy,c
are the multipliers to incorporate the effect of respectively the time of the day
(e.g., day vs. night), the type of day (e.g., week vs. weekend) and the season.65

Comparison of the three datasets shows that residential consumers have a lower
VOLL than industrial consumers. On weekdays, VOLL of industrial consumers
is between 5 (GB, not winter, not peak weekday) and 300 (US, winter weekday
afternoon) times higher than for residential consumers. During weekends, their
VOLL is more similar. Residential VOLL in Great Britain is higher and closer to
industrial VOLL than in the United States and in Norway. Industrial VOLL is
the same order of magnitude in all three countries, except for small commercial
and industrial consumers in the United States, which have a substantially higher
VOLL.66

The detailed VOLL data of Great Britain, Norway and the United States
are used in the numerical illustration of Section 7.4, but the level of detail is
restricted to consumer type and time of interruption.

Table 7.2: Great Britain VOLL as a function of time characteristics and
consumer groups [212, Table 1 and Table 2]. The upper part of the table is
expressed in [£2011/MWh], whereas the lower part of the table is expressed in
[e2015/MWh].

Not winter Winter
Weekday Weekend Weekday Weekend

Peak Not peak Peak Not peak Peak Not peak Peak Not peak

Res. 9 550 6 957 9 257 11 145 10 982 9 100 10 289 11 820
SMEs 37 944 36 887 33 358 34 195 44 149 39 213 35 488 39 863

Res. 11 093 8 081 10 753 12 946 12 757 10 571 11 952 13 730
SMEs 44 077 42 849 38 749 39 722 51 284 45 551 41 224 46 306

64This assumes that the effect of time, day and season on VOLL is independent. For
example, the relative decrease of VOLL in summer for residential consumers is the same
irrespective of the time or day.

65The Norwegian data also include the effect of interruption duration on VOLL. In the
remainder of this chapter, VOLL is assumed to be linear in duration, while in general VOLL
is concave in duration.

66Note that VOLL of a consumer type is an average of individual consumers of this type,
in between which large differences are possible.
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Table 7.3: Norwegian VOLL as a function of time characteristics and consumer
groups [196, Table A and Table B].

Residential Industry Commercial Public

VOLL [NOK2010/MWh] 5 000 116 000 192 000 170 000
VOLL [e2015/MWh] 469 10 926 17 984 15 888

Season γy,c

Winter 1 1 1 1
Spring 0.57 0.87 1 0.67
Summer 0.44 0.86 1.02 0.51
Autumn 0.75 0.88 1.06 0.58

Day γd,c
Weekday 1 1 1 1
Saturday 1.07 0.13 0.45 0.3
Sunday 1.07 0.14 0.11 0.29

Time γh,c
2 AM 0.4 0.12 0.11 0.43
8 AM 0.69 1 1 1
6 PM 1 0.14 0.29 0.31

7.3 Theoretical Analysis

Probabilistic reliability management enables a trade-off between preventive and
corrective actions and load curtailment. Total cost of reliability management
decreases if detailed VOLL data are used in short-term probabilistic reliability
management instead of one constant VOLL at all times and in all regions. This
efficiency gain is shown using an economic model.

Suppose a cost C(ρ) is needed to supply 1 MWh of electricity at reliability level
ρ. This reliability cost is assumed to be constant throughout the year. It is
increasing convex in the reliability level and approaches infinity at ρ = 1. The
reliability level is here represented by the relative amount of demand supplied
ρ ∈ [0, 1]:

ρ =
∑
c∈C(P loadc − P curtc )∑

c∈C P
load
c

(7.2)

That is, ρ is the fraction of total power demand that is supplied to consumers
in a certain period.

The optimal reliability level ρ∗ is found by minimizing the sum of reliability
cost C(ρ) and interruption cost (1− ρ)V :67

min
ρ
{C(ρ) + (1− ρ)V } (7.3)

67If the reliability cost C(ρ) includes all social costs of reaching a reliability level ρ, the
optimal reliability level is also the welfare optimum. If only private TSO costs are included,
the optimal TSO value differs from the welfare-optimal reliability level.
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This is at the point where marginal reliability cost equals marginal interruption
cost:

C ′(ρ∗) = V (7.4)

This first-order condition shows that VOLL influences the optimal reliability
level. Since the reliability cost increases in ρ, a high VOLL calls for a high
reliability level and a low VOLL for a low reliability level. For example, if
VOLL is higher in winter than in summer (Vwinter > Vsummer), the reliability
level should also be higher in winter than in summer. If a TSO, however, bases
its reliability level on the yearly-average VOLL V̄ , it will aim at a constant
reliability level ρ̄ throughout the year.68 As a result, its network is too reliable
in summer and not sufficiently reliable in winter. This is shown in Fig. 7.1,
where the reliability levels are found at the intersection of the VOLL and the
marginal reliability cost, which is increasing in ρ. In this figure, the reliability
cost is the area below the marginal reliability cost C ′(ρ), up to the reliability
level ρ, while the interruption cost is the area below the VOLL up to 1− ρ.

[e/MWh]

ρ
1

V̄

Vwin

Vsum

C ′(ρ)

ρ̄ ρwinρsum

Figure 7.1: Efficiency gains if VOLL differs over time.

If the TSO modifies the reliability level with changing VOLL (ρsum < ρ̄ < ρwin),
instead of aiming at a constant reliability level ρ̄, the sum of reliability costs
and interruption costs will be lower. This efficiency gain is defined as:

[C(ρ) + (1− ρ)V ]− [C(ρ∗) + (1− ρ∗)V ] [e] (7.5)

or
1− C(ρ∗) + (1− ρ∗)V

C(ρ) + (1− ρ)V [%] (7.6)

68Obviously, in reality the reliability cost is not constant throughout the year. For example,
if C(ρ) is higher in winter and VOLL is constant, it is optimal to have a lower reliability level
in winter than in summer. But for the sake of our argument we restrict our focus here to the
change of VOLL over time.
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Fig. 7.1 shows these efficiency gains as the dark grey triangle in summer (ρ = ρ̄,
ρ∗ = ρsum) and the light grey triangle in winter (ρ = ρ̄, ρ∗ = ρwin). In summer,
reliability costs are too high and interruption costs are too low; in winter,
reliability costs are too low and interruption costs are too high.

Next, suppose that VOLL is constant throughout the year, but differs between
consumers. In this case, efficiency gains are achievable by providing low-VOLL
consumers with a lower reliability level than high-VOLL consumers. The highest
efficiency gain is achieved if demand is curtailed from lowest to highest VOLL
[223]. This can be denoted as perfect curtailment. Perfect curtailment is
only possible when the TSO has the technical capabilities to curtail individual
consumers. When this is not possible, efficiency gains are still achievable when
curtailment is performed first in low-VOLL regions, in this work denoted as
spatial curtailment. Spatial curtailment leads to lower interruption costs than
random curtailment.

Fig. 7.2 illustrates the efficiency gains of perfect, spatial, and random
curtailment. VOLL is assumed to be uniformly-distributed between Vmin
and Vmax. This is the downward-sloping line. Moving from random curtailment
(with average VOLL V̄ ) to spatial curtailment (with regional VOLLs V1 and
V2) leads to an efficiency gain equal to the light grey area. This is the sum of
lower reliability costs (A) and lower interruption costs (B). The dark grey area
is the additional efficiency gain of moving from spatial to perfect curtailment.
This is the sum of additional lower reliability costs (C) and additional lower
interruption costs (D). Interruption costs are lower because low-VOLL consumers
are curtailed first. For spatial curtailment these are consumers in the low-VOLL
area 1; for perfect curtailment these are the consumers with the lowest VOLL, in
both region 1 and 2. Moving from random curtailment to perfect curtailment, the
decrease of reliability costs is thus A+C+E and the net decrease of interruption
costs is B+D-E.

The regional VOLLs, represented by V1 and V2 in Fig. 7.2, depend on the
correlation of VOLL between regions. They differ more if low-VOLL consumers
are all concentrated in one region. In that case, the reliability level ρsp is closer
to the optimal reliability level ρ∗ and interruption costs of spatial curtailment
are lower.
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B
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[e/MWh]

ρ
1
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ρspρrnρ∗

Perfect

Spatial
Random

Figure 7.2: Efficiency gains and reliability level of random ρrn, spatial ρsp, and
perfect curtailment ρ∗, if VOLL differs between regions.

7.4 Numerical Illustration of the Impact of VOLL
Detail in Short-Term Reliability Management

The theoretical concepts of the previous section are verified in a numerical
five-node case study. During operation of the electricity system TSOs face
many challenges: line outages and generation outages occur, unscheduled loop
flows pass through the network and demand and intermittent supply differ
from forecasts. As a result, the TSO takes preventive and corrective actions or
curtails load to ensure that demand and supply are always balanced without
violating any operational limit. Short-term, probabilistic reliability management
makes a trade-off between preventive, corrective and interruption costs by taking
into account the risks related to power system uncertainties. This trade-off
is influenced by the level of detail of the VOLL data considered in decision
making.

7.4.1 Evaluation of Short-Term Reliability Management

Short-term reliability management consists of two parts: real-time operation
and operational planning. Both aim at minimizing expected total system cost.
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Real-Time Operation

When disturbances occur in the power system, the TSO takes corrective actions
or curtails load to keep the system in balance. Possible corrective actions
acorrrt during real-time (RT) operation are generation redispatch, phase-shifting
transformer tap changing and branch switching. The TSO takes at each time
instant t those actions that minimize the cost of corrective actions and the cost
of load curtailment, subject to operational constraints [194].

min
acorr

rt ,P curt
c,rt

[
Ccorr(acorrrt ) +

∑
c∈C

P curtc,rt · v

]
(7.7)

s.t. operational limits

Interruption costs are the product of curtailed load P curtc,rt and VOLL v for all
consumers. The specification of v depends on the level of VOLL detail:

v ∈ {V, vt, vb, vc} (7.8)

That is, VOLL is constant (V ); VOLL differs over time t (vt = V (t)); VOLL
is aggregated per node b and differs for all time instants t (vb = V (b, t)); or
VOLL differs between consumer groups c and over time t (vc = V (c, t)). Eq.
(7.7) shows that different levels of detail in VOLL data change the trade-off
between corrective actions and load curtailment and affect which consumers
and which regions to curtail. The level of detail has an effect on the choice of
corrective actions acorrrt and load curtailment P curtc,rt , which, in turn, affects total
system cost.

Operational Planning

Real-time operation is preceded by the operational planning stage. Operational
planning (OP) is executed some time before real-time operation, for example,
in day-ahead for the 24 hours of the next day. During operational planning,
the TSO determines the optimal dispatch of electricity generation, taking into
account uncertainties about future real-time states s of the system. The
difference between the unconstrained day-ahead market dispatch and the
dispatch after operational planning is the cost of preventive redispatch. The TSO
determines the preventive actions aprev that minimize the sum of preventive costs
Cprev(aprev) and expected real-time costs, consisting of the cost of corrective
actions Ccorr(acorrs ) and load curtailment P curtc,s · v, subject to operational
constraints for all states s in the set of considered system states S:
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min
aprev,acorr

s ,P curt
c,s

[
Cprev(aprev) +

∑
s∈S

ps ·

(
Ccorr(acorrs ) +

∑
c∈C

P curtc,s · v

)]
(7.9)

s.t. operational limits ∀s ∈ S

where ps is the probability of occurrence of a possible future real-time state
s. The TSO takes into account a set of possible future real-time states S
when deciding on its preventive actions aprev. The set S is in this case study
the Cartesian product of the most probable contingencies up to a cumulative
probability of 99% and 7 possible real-time realizations of net total demand
derived from a normal distribution with mean equal to the forecast value of
net total demand at time instant t and a coefficient of variation of 4%.69 As a
result, VOLL does not only affect corrective actions and load curtailment, but
also preventive actions of forward-looking TSOs.

Eq. (7.3) of our theoretical analysis is a simplified version of Eq. (7.9). While
in the theoretical analysis the TSO chooses the reliability level ρ directly, he/she
takes a number of preventive (aprev) and corrective (acorrrt ) actions in the case
study, which lead to a certain reliability level. The reliability cost C(ρ) of the
theoretical analysis includes both the cost of preventive and corrective actions.

Evaluation

Performance of short-term reliability management for various levels of VOLL
detail is evaluated in terms of Expected Total Cost (ETC). ETC consists of costs
of preventive actions, costs of corrective actions and cost of load curtailment.

ETC(v) =
∑
t∈T

pt · [Cprev(aprev(v, t)) + . . .

∑
rt∈RT

prt|t ·

(
Ccorr(acorrrt (v, t)) +

∑
c∈C

P curtrt,c (v, t) · vc

)]
(7.10)

Preventive, corrective and curtailment actions

[aprev(v, t),acorrrt (v, t), P curtrt,c (v, t)] ∀c ∈ C (7.11)
69The number of realizations is not optimized. The realizations are symmetrically and

equidistantly chosen around the forecast value, with a maximal deviation of +/-3σ. The
coefficient of variation is based on [122].
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are taken by a TSO based on the available VOLL information, i.e., the level
of detail in the VOLL data, v ∈ {V, vt, vb, vc}. Load curtailment costs are
evaluated at the true VOLL of a consumer vc.70

Evaluating all possible future real-time system states rt is not feasible in practice.
Therefore the set RT is the Cartesian product of the most probable contingencies
up to a cumulative probability of occurrence of 99.6 % and 11 possible real-time
realizations of net total demand derived from a normal distribution with mean
equal to the forecast value of net total demand at time instant t and a coefficient
of variation of 4%. This set of system states is larger than the set S considered
in decision making to evaluate reliability management also in system states that
are not considered in advance.71

In addition to ETC, two other important indicators are the overall reliability
level and equality between consumers. The reliability level is expressed in
terms of relative load curtailment RLC represented in an equivalent number of
minutes per year as given in Chapter 3, Eq. (3.2). Equality of the reliability
level between consumers is evaluated using the index proposed in Chapter 6,
Eq. (6.10), using the inequality ratio in Eq. (6.6).

7.4.2 Data

The numerical illustration uses a five-node test system and considers VOLL
data of three different countries (Great Britain, Norway and the United States).
The same analysis is repeated for each of the countries to determine a range of
potential improvements in performance of short-term power system reliability
management if more detailed VOLL data are used. The three datasets consider
a different number of consumer types and temporal cases, resulting in different
levels of detail. A year is represented by 72 typical time instances, constituting
all temporal cases considered in the VOLL data. To unify the data with respect
to consumer types, consumers are split into only two categories: residential and
non-residential consumers. The share of residential and non-residential demand
in total system demand changes throughout the year. Non-residential consumers
correspond to the aggregated share of all consumers except the residential ones,
i.e., large and small C&I combined in the United States and industry, public
and commercial combined in Norway. By unifying the test set, the results for
the data of Norway, GB and the US can be compared, although their VOLL

70Eq. (3.1) defines the ideal evaluation of total system cost in terms of the value of lost load
per individual consumer vj . However, this level of detail is not available in the considered
data. Therefore, we have used the highest level of detail available, i.e., VOLL per consumer
group vc.

71The number of realizations is not optimized. The realizations are symmetrically and
equidistantly chosen around the forecast value, with a maximal deviation of +/-3σ.
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data have different levels of detail. Detailed data about the test system can be
found in Appendix D.

If more detailed VOLL data are used, three cases are distinguished. In the
first case, different consumer groups are considered each with their respective
VOLL vc(b, t) and are considered to be curtailable at their respective VOLL. In
the second case, VOLL is aggregated per node using a weighted average of the
VOLL of the different consumer types vb(t) =

∑
c∈C DS(c, b, t) · vc(b, t), with

DS(c, b, t) the share of consumer group c in total demand at node b at time
t. In the third case, VOLL is aggregated per time instant using a weighted
average of the VOLL at different nodes and the share of total load at that node:
vt =

∑
b∈BDS

ref (b) · vb(t), with DSref (b) the demand share of a node b in
total demand.

7.4.3 Results

Probabilistic reliability management is simulated using a probabilistic security
constrained DC optimal power flow [194] implemented in AMPL [126]. This DC
SCOPF is interfacing with the other modules of the quantification framework
modeled in Matlab to provide the necessary input data [63, 129].

Table 7.5 gives summary statistics of the detailed VOLL data. First, the average
VOLL (E[v]) is significantly lower in Norway than in GB and US. Second, when
VOLL is constant throughout the country, but differing over time (vt), temporal
variation, represented by the coefficient of variation σ

µ , is high for Norway,
average for US and low for GB. The higher temporal variability in Norway is
likely due to the larger relative difference between cold winters and temperate
summers. In Norway, the minimum country-wide VOLL is only e255 /MWh,
whereas it is a hundredfold in both GB and US. The country-wide maximum is
between e9423 /MWh and e116560 /MWh. This means that optimal reliability
will differ substantially over time if the Norwegian data are applied, will differ
a bit with the US data and will not change much with the GB data. Third,
when VOLL is allowed to change over time and is differentiated between nodes
(vb), the minimum and maximum VOLL diverge in all three countries. Fourth,
when in addition VOLL is differentiated between consumers (vc), minimum and
maximum VOLL diverge even more in all three countries. As a result, the lower
the minimum VOLL, the less preventive actions will be taken, as a loss of load
is not costly.
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Table 7.5: Summary statistics of detailed VOLL data in Norway, Great Britain
and United States in [e/MWh].

Norway GB US

Average VOLL E[v] 2 095 31 632 57 312

vt

σ[v]
E[v] 1.1898 0.088 0.4367
min 255 28 251 27 277
max 9 423 36 836 116 560

vb
min 108 15 035 4 832
max 12 338 51 284 370 364

vc
min 83 8 081 1 190
max 19 063 51 284 458 343

Table 7.6 shows the relative change of expected total system costs ∆ETC for
the five-node test system, which is defined as

∆ETC = ETC(v)− ETC(V )
ETC(V ) · 100% (7.12)

where v equals VOLL differentiated per consumer group (vc), VOLL
differentiated per node (vb), or VOLL differentiated per time instant (vt),
depending on the case under investigation. V represents a constant VOLL for
all nodes and consumer groups in all temporal cases.

Table 7.6: Relative expected total system cost savings using VOLL data of
three countries with different levels of detail.

∆ETC [%] vt vb vc

Norway -10.68 -20.27 -43.28
GB -0.01 -3.03 -9.37
US -0.95 -11.14 -29.52

Table 7.6 shows that potential cost savings differ between the cases with the data
from Norway, Great Britain and the United States. They strongly depend on
the absolute value of lost load. First, as expected from the theoretical analysis,
cost savings increase with a higher degree of VOLL differentiation. The lower
the minimum VOLL that can be curtailed in case of contingencies, the less
costly preventive actions are needed. As the minimum and maximum VOLL
diverge with a higher degree of differentiation, cost savings increase accordingly.
Secondly, cost savings are large with the Norwegian data, because the minimum
VOLL is close to the cost of preventive and corrective actions. For temporal
differentiation (vt), cost savings are substantial with the Norwegian data, low
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with the US data and negligible with the GB data. Cost savings are the result
of an interplay between temporal variation, characterized by the coefficient of
variation in Table 7.5, and the absolute level of the minimum VOLL. The lower
the absolute level of minimum VOLL and the higher the temporal variation,
the larger the cost savings.

Fig. 7.3 takes a closer look at how the cost savings of Table 7.6 depend on
preventive, corrective and curtailment actions. The Norwegian data lead to
decreased costs primarily because less preventive actions are taken, as its cost
of curtailing residential consumers is low. With the GB and US data, cost of
preventive actions and curtailment cost decrease when shifting to spatial (vb)
and perfect curtailment (vc).

V vt vb vc V vt vb vc V vt vb vc
0

50

100

Norway GB US

R
el
at
iv
e
E
T
C

[%
]

Case

Country

Preventive redispatch Corrective redispatch
Load curtailment Reference = V for US

Figure 7.3: Evolution of cost terms in expected total system cost for different
levels of detail of VOLL.

Another important aspect to consider in the discussion is equality of the
reliability level between different consumers. If more detailed VOLL data
are used and TSOs are able to curtail load based on VOLL, particular consumer
groups might experience lower reliability levels. Table 7.7 shows the relative load
curtailment per node and consumer group. The last column shows the inequality
index UENS , evaluating the distribution of reliability among consumers, as
defined in Eq. (6.10). Table 7.7 shows first that spatial curtailment (vb)
considerably increases inequality. In all three countries, curtailment is almost
completely limited to node 5, where low-VOLL residential consumers are located.
Second, perfect curtailment (vc) also increases inequality, but less than spatial
curtailment. Curtailment is almost completely limited to residential consumers,
as they have the lowest VOLL most of the time. Third, changing VOLL over
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time (vt) does not increase inequality. Using Norwegian and US data, inequality
slightly decreases, whereas with GB data, it is constant.

Relative load curtailment does not change if more detailed VOLL data are used,
except when spatial and perfect curtailment, respectively based on vb and vc,
are exploited in the Norwegian data. In that case RLC increases, because
curtailing consumers is cheaper than expensive preventive and corrective actions.
This is because the absolute level of VOLL is lower in the Norwegian data than
in the GB and US data.

7.5 Discussion

The trade-off between efficiency and equality of reliability is an important
aspect to consider when introducing more detailed VOLL data. Table 7.8
summarizes the reduction of expected total cost (∆ETC) and the inequality
index (UENS) for the VOLL data of the three countries with different levels of
VOLL detail. If VOLL is equal for all nodes, but differs over time, total cost
decreases, without a significant effect on equality. With the Norwegian and US
data, inequality decreases, but this seems to be by chance, as the TSO curtails
nodes more randomly.72 Detailed VOLL data per node vb or per consumer
group vc, however, have a larger potential for cost savings, but at the expense of
increasing inequality. Inequality is higher for spatial curtailment than for perfect
curtailment. This is because spatial curtailment focuses mostly on the same
node (node 5). Perfect curtailment, by contrast, focuses on those consumers
with the lowest VOLL. Because they are different groups over time, curtailment
is more diversified and inequality is lower. This means that if VOLL data is
available, but perfect curtailment is technologically infeasible, a country should
carefully assess if the efficiency gains of spatial curtailment make up for the
increased inequality.73

Two issues merit more discussion. First, currently most TSOs do not use
even a constant VOLL in their short-term reliability management. Especially
not one that is based on extensive VOLL studies. TSOs’ reliability decisions
are guided by the N-1 criterion. This criterion states that an unexpected
outage of a single system component may not result in a loss of load. That
is, when a single system component fails, the transmission system should still
be able to accommodate all flows without load curtailment. The detailed data
required for probabilistic reliability management (failure rates, forecast errors,

72Although not completely randomly, because the network topology and the cost of
preventive and corrective actions also affect curtailment decisions.

73Options to reduce inequality are discussed in more detail in Chapter 6.



DISCUSSION 141

Table 7.8: Summary table presenting the trade-off between efficiency and
equality for the VOLL data of the three countries.

Norway GB US
V vt vb vc V vt vb vc V vt vb vc

∆ETC 0 -10.68 -20.27 -43.28 0 -0.01 -3.03 -9.37 0 -0.95 -11.14 -29.52[%]
UENS 0.66 0.58 0.81 0.75 0.7 0.7 0.82 0.74 0.68 0.64 0.85 0.73[/]

wind and solar data, detailed demand and generation data, and, of course,
VOLL) are not yet widely available. However, advances in communication
and information technologies facilitate gathering this data. With more data
available, TSOs can gradually introduce probabilistic methods and interruption
costs into reliability management. Moreover, the Fourth Energy Package of the
European Commission prescribes that all member states have to establish at
least a single estimate of VOLL for their territory and can establish a VOLL
per bidding zone, if they have several ones.

Second, actual VOLL strongly depends on the currently perceived reliability
level, which is high with currently used reliability management [224]. Therefore,
VOLL values are in fact not absolute, but conditional upon the perceived
reliability level at the moment of the survey. If the reliability level is high,
people do not take many actions to prepare for an interruption. A low reliability
level on the contrary encourages local investments, e.g., in storage or local
generation, to prepare for interruptions. If spatial or perfect curtailment is
implemented, the reliability level would change for different consumer groups,
which in turn changes their VOLL. Due to its low VOLL values, Norway might
be mostly impacted by this effect, as people will experience lower reliability
levels if exact VOLL data are taken into account in reliability management.74
Taking into account behavioral feedback effects of VOLL is important, but a
lengthy learning process.

This chapter focused on the efficiency gains in short-term reliability management.
However, considerable gains are also possible in the mid term and long term. A
better understanding of interruption costs will lead to better maintenance and
system expansion decisions.

Lastly, the increase of intermittent generation will require significant expansions
in transmission infrastructure [225]. However, the high costs of transmission

74The analysis is done for a small-scale test system to which the VOLL data the three
countries are applied to obtain comparable results. The networks of the respective countries
are not considered in the analysis.
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investments and the difficulties to build new lines in both rural and urban areas
could hinder this development [226]. This will push power system operation
closer to its limits. In such a stressed power system, the use of detailed VOLL
data will yield even higher benefits.

7.6 Conclusions

Many empirical studies have estimated how VOLL depends on interruption
characteristics – especially consumer type and time of interruption. However,
few applications actually use detailed VOLL data to improve power system
reliability. A theoretical analysis and a numerical illustration of short-term
reliability management both show that incorporating detailed VOLL data leads
to considerable efficiency gains. The numerical illustration leads to potential
gains between 3% and 20% when spatial curtailment is used, and between 9%
and 43% when perfect curtailment is used.

The analysis showed that this efficiency gain has a downside. Equality of
reliability decreases when more cost-effective spatial and perfect curtailment are
used in the case study. Striking the balance between these opposing objectives
is the role of a regulator, based on society’s preferences. When only temporal
aspects of VOLL are incorporated, efficiency gains are lower, but the case study
shows no significant effect on equality. This is shown by the Norwegian VOLL
data that have much temporal variability

To reap the benefits of detailed VOLL data in short-term reliability management,
two conditions need to be met. First, TSOs need to move away from the
currently-used N-1 reliability criterion and move towards probabilistic reliability
management that facilitates a trade-off between preventive, corrective and
interruption costs. Second, more VOLL studies are needed to improve detailed
VOLL data. A widespread roll-out of smart meters have the potential to
facilitate the determination of VOLL for different consumer types and different
interruption times and can help to achieve perfect curtailment.



Chapter 8

Short-Term Reliability
Management Approaches and
Criteria

The strict dichotomy between the deterministic N-1 criterion and a fully
probabilistic reliability criterion is a simplification. Several reliability criteria
exist between these two extremes. The objective of this chapter is to distinguish
intermediate steps to bridge the gap between the deterministic N-1 approach
and an advanced, fully probabilistic RMAC to facilitate the practical application
of probabilistic RMACs. This chapter proposes a classification of reliability
criteria based on four controllable factors: (i) the set of considered system states,
(ii) the objective function, (iii) the allowed real-time actions and (iv) optional
non-technical constraints. This classification improves the understanding of the
differences between reliability criteria for short-term reliability management
proposed in specialized literature.

The multi-dimensional performance assessment of six proposed reliability
criteria is illustrated in a five-node test system. This illustration, however,
does not intend to identify the fundamentally optimal reliability criterion for
actual large-scale systems, but intends to indicate general characteristics and
relative performance of different reliability criteria. Based on this analysis, the
difficulties to adopt alternative criteria in a practical context as well as possible
improvements in terms of different performance aspects are revealed in relation
to the currently applied N-1 criterion.

Section 8.1 presents the classification of reliability criteria and describes six
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reliability criteria that range from the deterministic, strict N-1 reliability
criterion to a fully probabilistic reliability criterion based on socio-economic
principles. The six reliability criteria are evaluated along five performance
indicators: (i) expected total cost, (ii) unreliability, (iii) inequality between
consumers in terms of reliability, (iv) data requirements and (v) ease of use, in a
case study in Section 8.2. Section 8.3 discusses the results, while in Section 8.4
the classification framework is applied to the reliability management approach
and criterion developed in the GARPUR project. Section 8.5 concludes the
chapter.

This chapter is based on the paper A multi-dimensional analysis of reliability
criteria: from deterministic N-1 to a probabilistic approach, Heylen E., Ovaere
M., Proost S., Deconinck G. and Van Hertem D. submitted for publication in
IEEE Transactions on Power Systems.75

8.1 Classification of Short-Term Reliability Man-
agement Approaches and Criteria

Reliability criteria guide reliability management of TSOs, from long-term system
development to short-term operational planning and real-time operation [227].
In each of these planning horizons, the TSO continuously takes actions to
minimize the cost of satisfying the reliability criterion. Reliability management
in this dissertation focuses on the cost minimization problem of the TSO in
operational planning and real-time operation:

min
aprev,acorr

s ,Pcurt
s

[∑
s∈S

Ctot(aprev,acorrs ,Pcurts )
]

(8.1)

s.t. G0(aprev) = 0 (8.2)

H0(aprev) ≤ 0 (8.3)

Gs(acorrs ,Pcurts ) = 0 ∀s ∈ S (8.4)

Hs(acorrs ,Pcurts ) ≤ 0 ∀s ∈ S (8.5)

|acorrs − aprev| < ∆as ∀s ∈ S (8.6)
75The first two authors are the main authors of the paper and contributed equally to

the study. The contributions of the first author include the modeling and analysis of the
reliability management approaches and criteria, as well as the development of the multi-
dimensional analysis. The development of the classification framework and the interpretation
and discussion of the results are the result of a collaboration between the first two authors.
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In operational planning and real-time operation, the TSO’s objective is
to minimize total cost

∑
s∈S C

tot(aprev,acorrs ,Pcurts ), while satisfying the
power flow equations (equality constraints G0 and Gs) and operational limits
(inequality constraints H0 and Hs) [57]. During operational planning, the
TSO takes the most cost-effective preventive actions aprev to ensure that these
constraints are met in all considered system states s ∈ S.76 The set of considered
system states depends on the applied reliability criterion.

If contingencies happen in real-time and preventive actions turn out to be
insufficient, the TSO can take corrective actions acorrs or resort to load
curtailment Pcurts .77 They choose the cheapest actions that are within the
constraints of the applied reliability criterion to make sure operational limits
are still met. Unconsidered system states could lead to uncontrolled brownouts
or blackouts, if corrective actions are not able to deal with the realized real-time
system state.

The remainder of this section formulates and discusses the six considered
reliability criteria.78 Table 8.1 summarizes the analyzed reliability criteria along
the four proposed characteristics.79

8.1.1 N-1 Reliability Criterion

Currently, all TSOs use the N-1 reliability criterion or some variant in short-term
reliability management. This straightforward criterion states that networks
should be able to withstand a loss of one circuit without causing overloads of
any other circuit and such outages must not threaten the integrity of system
operation [230]. A direct link between the preventive and corrective stage is not
made if not required and the system is secured ahead of real-time, if possible.
The TSO’s objective function is deterministic and limited to minimizing the cost
of preventive actions. The expected costs of corrective and curtailment actions
in real-time are not explicitly considered. The set of considered system states
consists of all N-1 contingencies and is usually called the N-1 contingency set. In

76Examples of available actions in the operational planning stage are generation redispatch,
branch switching, phase-shifting transformer tap changing, and ensuring the availability of
upward and downward reserves [228].

77Possible corrective actions are branch switching, secondary voltage control, capacitor and
reactor bank switching, the use of upward and downward reserves, phase-shifting transformer
tap changing and load curtailment [57].

78To simplify the notation, Gs() represents the set of all constraints, i.e., the equality and
inequality constraints in the reference state and each system state s and the constraint of the
rate of change.

79The discussed reliability criteria mainly focus on risk-neutral reliability management.
Alternatively, risk averse objective functions can be considered that are typically implemented
using robust optimization techniques [229].
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case of N-1 network contingencies, the network should be able to accommodate
all resulting flows. The mathematical formulation of the N-1 reliability criterion
is:

min
aprev

[Cprev(aprev)] (8.7)

s.t. Gs(aprev) = 0 ∀s ∈ SN−1,network (8.8)

In case of N-1 generation contingencies, real-time corrective actions acorrs , like
upward and downward use of reserves, are needed to restore the balance between
demand and supply.

Gs(aprev,acorrs ) = 0 ∀s ∈ SN−1,generation (8.9)

In any case, load curtailment is not allowed in N-1 system states (i.e., in both
network and generation N-1 contingencies). The N-1 reliability criterion does
not explicitly prepare for multiple contingencies. In these cases, load curtailment
could turn out to be required to prevent a blackout in real-time operation. In
many countries, the exact definition of the N-1 reliability criterion differs from
the above strict formulation.

8.1.2 Deterministic Reliability Criterion with a Different Set
of Considered System States

The mathematical formulation of this reliability criterion is similar to that of
the N-1 reliability criterion. The primary difference is the set of considered
system states, which is allowed to differ from the N-1 contingency set.

min
aprev

[Cprev(aprev)] (8.10)

s.t. Gs(aprev) = 0 ∀s ∈ Sprev (8.11)

Gs(aprev,acorrs ) = 0 ∀s ∈ S \ Sprev (8.12)

This reliability criterion requires a TSO to minimize its cost of preventive
actions Cprev while meeting the constraints for a subset of all considered system
states Sprev with preventive actions only and for the remaining considered
system states S \ Sprev with both preventive and corrective actions to balance
demand and supply. The set of considered system states S could be defined
in different ways. It could, for example, include N-1 network contingencies,
but exclude generator and busbar failures from the N-1 contingency set [89,
p.25]; increase the contingency set to include multiple dependent failures with
a high probability of occurrence; change the contingency set over time (e.g.,
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including double-circuit failures only during adverse weather) or between regions
(e.g., including more contingencies for urban areas or business districts); etc.
In addition to contingencies, the set of considered system states could also
include deviations from the expected operating condition, like forecast errors of
demand and intermittent supply. In its most general form, the set of considered
system states S is the Cartesian product of credible contingencies and considered
operating conditions. S is always a subset of the infinite set of all possible
future real-time states and contingencies (RT). Fig. 8.1 illustrates different
sets of considered system states in the Cartesian plane of contingencies and
operating conditions: the set of N-1 network contingencies SN−1,network, the
set of N-1 contingencies SN−1, a set of N-k contingencies SN−k, a general set S
of contingencies and operating conditions and the set of all possible real-time
operating states and contingencies RT .

S

RT

Contingencies

Operating conditions

SN−1,network

SN−1

SN−k

Figure 8.1: Different sets of considered system states in the Cartesian plane of
contingencies and operating conditions.

It is also possible that (well-informed) state selection leads to a set of considered
system states in which not all of the N-1 contingencies are included. This
might be, for instance, because the probability of occurrence or the impact of
the excluded states is too low. The impact on the performance indicators of
such sets is hard to predict, as this is an interaction between the impact of the
additional and removed operating states.

8.1.3 Probabilistic Reliability Criterion without Load Curtail-
ment in Considered States S

If the TSO takes the expected cost of corrective actions in considered system
states s ∈ S into account in operational planning, its objective function becomes
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probabilistic. The TSO simulates which actions it will take in each of the
considered system states and the expected cost is calculated as the product of
the cost of actions in each state and its associated probability of occurrence.
First, suppose that load curtailment is not allowed in considered system states.
The mathematical formulation becomes:

min
aprev,acorr

s

[
Cprev(aprev) +

∑
s∈S

ps · (Ccorr(acorrs ))
]

(8.13)

s.t. Gs(aprev,acorrs ) = 0 ∀s ∈ S (8.14)

The difference between this criterion and the previous criterion is that a TSO
now incorporates the effect of its preventive actions on the cost of its corrective
actions, instead of just checking if the constraints are met. This enables an
explicit trade off between preventive and corrective actions.

8.1.4 Probabilistic Reliability Criterion

If, in addition, load curtailment is allowed in considered system states and
the TSO also takes the expected cost of load curtailment into account in its
operational planning minimization, this results in a fully probabilistic reliability
criterion [22, 40, 59]. The mathematical formulation is:

min
aprev,acorr

s ,Pcurt
s

[
Cprev(aprev) +

∑
s∈S

ps ·
(
Ccorr(acorrs ) + Ccurt(Pcurts )

)]
(8.15)

s.t. Gs(aprev,acorrs ,Pcurts ) = 0 ∀s ∈ S (8.16)

With Pcurts the vector of load curtailment [MW] of all consumers in state s.
The difference between this criterion and the previous criterion is that the effect
of preventive actions on the cost of corrective actions and load curtailment is
incorporated. This enables an explicit trade off between preventive, corrective
and curtailment actions.

8.1.5 Probabilistic Reliability Criterion with a Constraint on
the Aggregate Reliability Level

Where the fully probabilistic reliability criterion aims at minimizing the expected
total cost (ETC), it can also reduce the reliability level considerably [193].
Therefore, social and political concerns could lead to the addition of a constraint
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on the value of the expected aggregate reliability level P̄ curt. Such a constraint
is one way to limit the decrease of the reliability level. If the constraint is
binding, ETC will be higher. The mathematical formulation becomes:

min
aprev,acorr

s ,Pcurt
s

[
Cprev(aprev) +

∑
s∈S

ps ·
(
Ccorr(acorrs ) + Ccurt(Pcurts )

)]
(8.17)

s.t. Gs(aprev,acorrs ,Pcurts ) = 0 ∀s ∈ S (8.18)∑
j∈J

∑
s∈S

ps · P curtj,s ≤ P̄ curt (8.19)

with J the set of all consumers.

8.1.6 Probabilistic Reliability Criterion with Constraints on
Individual Reliability Levels

The reliability constraint can also be imposed at the level of the individual
instead of the aggregate. In that case, the constraint provides a minimal
expected reliability level P̄ curtj for each consumer j.

min
aprev,acorr

s ,Pcurt
s

[
Cprev(aprev) +

∑
s∈S

ps ·
(
Ccorr(acorrs ) + Ccurt(Pcurts )

)]
(8.20)

s.t. Gs(aprev,acorrs ,Pcurts ) = 0 ∀s ∈ S (8.21)∑
s∈S

ps · P curtj,s ≤ P̄ curtj ∀j ∈ J (8.22)

8.2 Case Study

A case study applies the six reliability criteria introduced in Section 8.1 to a
five-node test system. The performance of the reliability criteria is evaluated
based on the reliability management performance metric proposed in Chapter 3,
which uses 5 performance indicators. The results are summarized in Table 8.3.
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Table 8.1: Summary of the six reliability criteria.

(a) (b) (c) (d) (e) (f)

1. Set of
considered states SN−1 SN−k S S S S

2. Curtailment
allowed in S no no no yes yes yes
3. Objective
function Det.1 Det. Prob.2 Prob. Prob. Prob.
4. Non-technical
constraints / / / / P̄ curt P̄ curtj

1 Deterministic 2 Probabilistic
(a) Deterministic with N-1 contingency set
(b) Deterministic with different set of considered states
(c) Probabilistic without curtailment
(d) Probabilistic
(e) Probabilistic with aggregated constraint
(f) Probabilistic with individual constraint

8.2.1 Data

The illustrative five-node test system is based on the Roy Billinton reliability
test system [195]. Detailed data about the test system can be found in Appendix
D. The simulation is repeated for a more stressed and a less stressed case as
defined in Table 8.2 to verify the sensitivity of the results. This numerical
illustration uses VOLL data from Norway [196]. Two consumer types are
considered: residential and non-residential customers. The share of residential
and non-residential demand in total system demand changes throughout the
year, as discussed in Appendix D.

Table 8.2: Summary of the three cases for the sensitivity analysis.

More stressed Base case Less stressed

Load 105% 100% 95%
Failure rates 150% 100% 75%
Repair times 150% 100% 75%
Line rating 91% 100% 136%

8.2.2 Evaluation

An analytical non-sequential state enumeration technique is applied. The
quantitative performance indicators are evaluated for a set T of time instances
for which forecast values for load and renewable power generation are given.
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Corrective reliability management is simulated for a set RT ′ of real-time
realizations for each time instance in the set T . This set is the Cartesian
product of possible contingencies and real-time operating states.80 The latter
are conditional upon the forecast values. Preventive and corrective reliability
management are modeled using a DC security constrained optimal power flow in
AMPL [126]. In each simulation, the specifics per criterion as discussed in the
next section are taken into account. Available actions are generation redispatch,
branch switching, phase-shifting transformer tap changing and load curtailment,
depending on the applied criterion [194]. The simulations are done in Matlab
using an interface with AMPL. The optimization problem is solved using the
CPLEX solver [231].

Performance of the RMACs is evaluated based on the performance metric
introduced in Chapter 3. Five indicators, three quantitative and two qualitative
indicators, are used: expected total cost81, relative load curtailment, inequality,
data requirements and ease-of-use.82

Expected values of the quantitative performance indicators Qi,m over all
time instances t and real-time states rt are obtained in the analytical state
enumeration approach using:

E[Qi,m] =
∑
t∈T

pt
∑
rt∈RT

prt|t ·Qi,m(rt, t) (8.23)

The time instances t in the set T are characteristic time instances representing a
year. A weight pt is assigned to each of the characteristic time instances in the
set T . These weights represent the proportion of all hours in a year belonging
to a certain class represented by a certain characteristic time instance. prt|t is
the probability of being in real-time state rt at time t. Since the set RT is the
infinite set of all possible contingencies and all possible operating conditions,
Eq. (8.23) is in practice evaluated for a finite subset RT ′ ⊆ RT , where the set
of system states considered in the RMAC S ⊆ RT ′ [64].

Qualitative aspects, such as ease of use and data requirements, are hard to
quantify. A scoring system from +++ to - is used, representing resp. the best
and worst case.

80For this case study, the following assumptions are made: Most probable contingencies up
to a cumulative probability of 99.73% and 11 realizations of net total demand based on a
normal distribution of which the mean equals the forecast value and the coefficient of variation
is 4%.

81The evaluation of interruption cost in the total cost is based on the VOLL data per
consumer group, as discussed in Chapter 7 (Eq. (7.10)).

82These indicators were discussed in more detail in Chapters 3 and 6.
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8.2.3 Implementation of the Reliability Criteria

Criterion (a) in Table 8.1 considers all N-1 branch and generator outages in the
preventive decision stage. All these operating states are considered to be equally
probable. Load curtailment is avoided for this contingency set and all consumers
are treated equally. The objective is to secure the system preventively as much
as possible and corrective actions are considered as a last resort. The above
also holds for criterion (b), but the set of considered contingencies is different.

Criteria (b) - (f) consider a larger set of contingencies than criterion (a): The
most probable contingencies up to a cumulative probability of 99.7%. The
failure of some large generator units is not considered in the contingency set of
criteria (b) - (f) in this case study, due to their low probability of failure. The
set SN−k consists of 28 contingencies compared to 19 contingencies in the set
SN−1.

The set of considered system states S for reliability criteria (c) - (f) consists
of the Cartesian product of the elements of the contingency set SN−k and
7 possible real-time realizations of net total demand. These realizations are
determined based on a normal distribution with the forecast value of net total
demand as mean and a coefficient of variation of 4%. Probabilistic criteria (c) -
(f) take into account exact probabilities.

Whereas probabilistic criterion (c) tries to avoid load curtailment, criteria (d)
- (f) allow load curtailment if this tends to be more cost effective. However,
criteria (e) - (f) have upper limits on the amount of load curtailment, i.e., on
aggregated load curtailment for criterion (e) and individual limits for criterion
(f). In the latter case, the limit on aggregated load curtailment is distributed
over the consumer groups according to their demand share.83

The set of operating states used in criterion (b), SN−k, and criteria (c) - (f), S,
is graphically illustrated in Fig. 8.2. Some system states included in the N-1
contingency set SN−1 are not included in the alternative sets SN−k and S, due
to their low probability of occurrence, but some higher order contingencies are
added to these sets.

8.2.4 Results

Table 8.3 summarizes the performance of the six reliability criteria in the base
case of the considered five-node test system, as indicated in Table 8.2. The
results of the more and less stressed case are summarized in Table 8.4.

83The limit on aggregated load curtailment equals 0.2% of the maximal total demand in
the base case of the five-node system.
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S

RT

Contingencies

Operating conditions

SN−1,network

SN−1

SN−k SN−k SN−k

Figure 8.2: Graphical representation of the sets of operating states SN−1, SN−k
and S (indicated by the gray area) used in resp. criterion (a), criterion (b) and
criteria (c) - (f) as indicated in Table 8.1. The state-space RT represents the
space of all possible real-time operating states determined by contingencies and
operating conditions.

Expected Total Cost

The first row of Table 8.3 shows that expected total cost decreases when moving
from criterion (a) to criterion (d) and increases again when imposing restrictions
on the aggregate (crit. (e)) and individual (crit. (f)) reliability level. Criterion
(b) results in a lower ETC than criterion (a), because in our case study the
set of considered system states S excludes low-probability contingencies that
require costly preventive actions. Generally, the change of ETC from (a) to (b)
depends on the current performance of the N-1 criterion. If the N-1 criterion is
too stringent, enlarging the set of considered system states leads to even higher
total costs. If the N-1 criterion is too loose, enlarging the set of considered
system states could lead to lower total costs. Next, ETC decreases by moving
from deterministic criteria (a) and (b) to probabilistic criterion (c), because
more information is included in the operational planning decision. Criterion
(c) makes an explicit trade-off between preventive and expected corrective
actions [42]. By additionally allowing load curtailment, if this is less costly
than alternative corrective actions, criterion (d) leads to even lower ETC. In
this case study, most of the decreased ETC is due to a better trade-off between
preventive and expected corrective actions (crit. (c)). A smaller part is due to
allowing load curtailment in considered system states (crit (d)). The higher
VOLL is compared to the costs of other corrective actions, the larger this effect
[193]. The ETC of criteria (e) and (f) can be anywhere between the ETC of
criteria (c) and (d). The more stringent the imposed reliability constraint is,
the higher the ETC. Individual constraints on the reliability level (crit. (f))
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always lead to an equal or higher ETC than an aggregate constraint (crit. (e)),
as load curtailment of low-VOLL consumers is now substituted for corrective or
preventive actions, or load curtailment of consumers with a higher VOLL. To
summarize:

ETCd ≤ ETCe ≤ ETCf ≤ ETCc ≤ ETCb and ETCa (8.24)

Unreliability

The second row of Table 8.3 shows the unreliability for each of the six criteria.
The effect of a particular reliability criterion on the reliability level is closely
related to its effect on ETC. Criterion (b) has a slightly higher unreliability,
because in our case study not all elements in the N-1 contingency set SN−1 are
part of the set SN−k. Moving from deterministic to probabilistic criteria has a
mixed effect on reliability, depending on the exact formulation of the criterion.
Disallowing load curtailment in considered states in a probabilistic approach
(crit. (c)) does not imply that unreliability is zero, because load curtailment
could still be necessary in non-considered states. Allowing load curtailment in
considered states (crit. (d)) decreases ETC even more, but at the expense of
a highly increased unreliability. Evidently, constraints on the reliability level
(crit. (e) - (f)) decrease the unreliability, but at the expense of a higher ETC.
To summarize:

RLCc ≤ RLCf ≤ RLCe ≤ RLCd (8.25)

Inequality

UENS in Tables 8.3 and 8.4 summarizes the inequality between consumers
in terms of reliability. Inequality between consumers depends on the relative
amount of load curtailment. The results of the more stressed case in Table 8.4
indicate that deterministic criteria lead to higher ETC and lower inequality,
whereas probabilistic criteria that allow load curtailment lead to lower ETC and
higher inequality. The reason is that deterministic criteria treat all consumers
equally, because they make no use of the differentiation to optimize cost-wise,
whereas these probabilistic criteria differentiate between consumers or nodes in
terms of VOLL. Inequality is lower if individual constraints on load curtailment
are applied (crit. f) than for criteria (d) and (e), but at the expense of higher
ETC. This is the case, because the inequality resulting from the differentiation
in VOLL is reduced by these individual limits, which are based on consumers’
demand share. If systems are less stressed, such as the base case in Table 8.3
and the less stressed case in Table 8.4, RLC is lower for criteria (a) - (c) and
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possibly concentrated in a reduced number of consumers. This increases the
inequality between consumers resulting from criteria (a) - (c) and reduces the
difference with criteria (d) - (f).

Data Availability

The fourth row of Table 8.3 shows that more data are needed as we move
from left to right. Probabilistic approaches (c) - (f) typically require more
information than deterministic approaches. Firstly, probabilities of failures
should be known. Moreover, forecast errors can be considered and for criteria
(e) and (f) appropriate limits on load curtailment should be determined. Some
of these data are currently not available for TSOs and might be hard to obtain
in practice. Failure probabilities might be imprecise, as well as forecast errors,
which might lead to inappropriate reliability management. Moreover, value of
lost load and the cost of corrective actions are hard to determine exactly.

Ease-of-use

The last four rows of Table 8.3 show that the ease of using the considered criteria
decreases from left to right, because more operating states need to be considered,
more information needs to be taken into account and the probabilistic nature
of criteria (c) - (f) adds a layer of complexity to reliability management.

Table 8.3: Performance evaluation of the six considered reliability criteria in
the base case: The first three indicators give a numerical value and the last two
indicators are expressed qualitatively as (-/+/++/+++), resp. from worst to
best (relative).

Base case Criteria of Table 8.1
(a) (b) (c) (d) (e) (f)

1. ETCrel [%] 100 87.34 34.62 26.63 33.83 34.50
2. RLC [min] 0.0046 0.0077 0.0046 18.87 1.83 0.19
3. UENS [/] 0.741 0.6128 0.569 0.811 0.794 0.604
4. Data requirements +++ ++ + + - -
5. Ease of use +++ ++ + + - -
5a. Type Det. Det. Prob. Prob. Prob. Prob.
5b. # of states1 19 28 196 196 196 196
5c. # output info +++ ++ + + - -

1 Dependent on the state selection algorithm
The numerical values cannot be generalized to real systems, but the trends
between reliability criteria can.
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Sensitivity Analysis

Table 8.4 summarizes the results of the sensitivity analysis for the more stressed
and less stressed cases defined in Table 8.2. In the more stressed case, the
relative difference in total system cost between the deterministic and probabilistic
approaches is slightly decreased. Both in the more stressed and the less stressed
case, the trends in differences between the criteria in terms of relative ETC
and RLC are the same as in the base case.

Table 8.4: Sensitivity of the six considered reliability criteria in a more stressed
case and a less stressed case.

More stressed Criteria of Table 8.1
case (a) (b) (c) (d) (e) (f)

ETCrel [%] 100 84.34 37.93 27.89 37.04 37.42
RLC [min] 0.0796 0.0862 0.0632 20.3 1.92 1
UENS [/] 0.353 0.473 0.3569 0.815 0.693 0.581

Less stressed Criteria of Table 8.1
case (a) (b) (c) (d) (e) (f)

ETCrel [%] 100 88.36 32.42 25.00 31.66 32.33
RLC [min] 0.0002 0.0016 0.0001 17.7 1.82 0.189
UENS [/] 0.718 0.476 0.694 0.814 0.829 0.629

8.3 Discussion

Despite the advantage of probabilistic criteria to decrease the cost of reliability
management, the N-1 criterion, or a variation of this, is still used by all network
operators. Barriers against implementing probabilistic approaches are mainly
due to data, complexity and transparency issues. The proposed intermediate
steps can help to gradually move towards probabilistic approaches. However,
some assumptions are made in the modeling approach, which should be placed
in the right perspective.

8.3.1 Barriers against Implementing Fully Probabilistic RMACs

The main barriers for probabilistic criteria are the lack of available and accurate
data, as well as the difficulty to understand and use the approach. These are
the factors summarized by the two qualitative indicators. To advance towards
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probabilistic reliability criteria, both the data and the ease-of-use should be
improved.

Data can be gathered at a decreasing cost due to advances in communication and
information technologies. Devices to measure climatic data, real-time voltage
and current data, and regional demand and generation data are being installed
in many countries. In an initial stage, aggregate data can be used, such as
location-independent forecast errors of load and renewable generation, a time-
independent VOLL, and constant failure probabilities of lines and generation.
More detailed data can be included in the decision-making process once they are
available, such as spatially-dependent forecast errors, time-dependent VOLL,
and failure probabilities that depend on component lifetime and external
conditions. However, the accuracy of these data influences the decision-making
behavior. Therefore, it is important to check the sensitivity of the performance
of reliability criteria with respect to the exactness of the values of the provided
data. If both the sensitivity of the results to the accuracy of the data and
the uncertainty on the accuracy of the data is high, accounting for imprecise
probability in the decision making might be favorable [232].

Probabilistic criteria are inherently more complex than their deterministic
counterparts, as probabilistic approaches make decisions based on trade-offs
instead of on a binary criterion. They have a steep learning curve and the
ease-of-use is low nowadays due to the lack of practical experience. However,
the transition from deterministic to probabilistic approaches can be facilitated
by taking intermediate steps between the currently used N-1 criterion and
a fully probabilistic criterion. The amount of data and complexity can be
gradually increased, in line with experience gained. A first step is to define an
adequate set of system states to consider. This set can be probability-based
or can be a time-dependent set of considered contingencies or system states
based on an implicit trade-off between the cost of preventive and corrective
actions and the implied security risk.84 This requires appropriate state selection
techniques [233]. Only changing the set of considered system states retains the
simplicity of deterministic criteria, while employing the cost-reducing trade-offs
of probabilistic criteria. A well-selected set of considered system states can for
instance reduce conservatism regarding low-probability N-1 states, which may
be costly to secure preventively. In a next step, expected interruption costs can
be added to this trade-off. In later steps, explicit probabilistic trade-offs can be
introduced in practical short-term reliability management.

Another barrier for probabilistic criteria is their alleged lack of transparency.
Comparing transparency of probabilistic and deterministic approaches is not
straightforward, because they are both transparent about different aspects.

84For example, a different set for high and low demand or normal and adverse weather.
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Deterministic criteria are transparent about when and why reliability actions
are undertaken and about which contingencies do not lead to interruptions.
However, they are less transparent about the risk level and the incentive used
in contingency selection. Transparency of probabilistic criteria depends on
their practical implementation. Probabilistic criteria can be transparent about
objectives, constraints, trade-offs or the risk level, while balancing reliability,
equality and efficiency. However, fully probabilistic RMACs are in general less
transparent about the set of contingencies that is preventively secured and the
selected reliability actions are much more dependent on the system state.

8.3.2 Assumptions in the Modeling Approach

The modeling approach of the case study incorporates a number of assumptions
TSOs might be concerned about in a practical analysis. These assumptions
might impact reliability management decisions, but do so for both deterministic
and probabilistic approaches. Moreover, the objective of this study is not to
formulate the optimal reliability criterion to be used in a practical TSO context
or to develop a SCOPF formulation that can be used in on-line system operation.
The study aims at providing insight in the impact of controllable factors of
reliability criteria that can facilitate the transition from deterministic N-1 to
probabilistic approaches.

First, in addition to the two considered decision stages (i.e. day-ahead
operational planning and real-time operation), TSO’s reliability management
consists of several additional stages, e.g. the D-2 decision stage, the intraday
market and the short-term preventive stage. All these decision stages could
be considered in probabilistic modeling [85, 234, 235]. Each of these decision
stages is also influenced by external factors that are out of the control of the
TSO, such as markets, balance responsible parties, generators and loads.85

Second, the decision-making process influences all aspects of power system
reliability and stability. The formulation used for this paper, DC (optimal)
power flow, is a simplified representation that does not consider particular
aspects, such as voltage or transient stability issues. Stability issues due to
topological actions are an important concern of certain system operators and
should be integrated in SCOPF formulations to support TSO’s decision making.
Topological actions can conceptually be integrated in the approach presented in
this dissertation. However, the considerable amount of binary variables involved

85In turn, market actors can also be affected by changing reliability management practices.
For example, if the amount of preventive actions decreases, generators receive less revenue
from preventive redispatch after day-ahead clearing (in single-price zones) or from security-
constrained day-ahead clearing (in multi-price zones or nodal pricing).
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in this decision making increases the computation time and the (numerical)
stability of the different cases is not verified. Therefore, system operators take
these aspects indirectly into account, by harvesting the operator’s knowledge in
SCOPF algorithms. They only focus on a predefined list of topological actions
for which the stability is verified.

Third, the effect of short-term probabilistic reliability management on the mid
and long term also needs to be studied [227]. For example, more stressed
systems could need higher maintenance expenditures and have higher losses. A
more efficient use of current transmission capacity also leads to fewer additional
investments.

8.3.3 Handling the Trade-Off between Efficiency, Reliability
and Equality

From an economic perspective, the optimal RMAC minimizes total system cost
resulting in the most efficient reliability and inequality level.86 Deviations from
this economically optimal RMAC to reduce load curtailment or inequality in
terms of reliability lead to inefficiencies and additional costs. However, with
the current mindset regarding power system reliability, TSOs are concerned
about their reputation in terms of providing continuity of power supply and
end-consumers are not used to low reliability levels and large differences between
consumer in terms of reliability. Intermediate steps are required to initiate the
transition to probabilistic reliability management based on economic incentives
and a trade-off needs to be made between efficiency, reliability and equality,
constituting a performance trilemma.

The results in this analysis have shown that an adequate set of considered
system states and a trade-off between preventive and corrective actions have
the potential to improve efficiency while having a similar performance in terms
of equality and reliability. Further efficiency improvements are possible if load
curtailment is considered in the trade-off. However, this comes at the cost of
reduced reliability and may have a negative impact on equality, depending on
the level of system stress.

To obtain an adequate RMAC considering TSO’s capabilities and society’s
preferences, a transparent dialogue between power system stakeholders is
important to clearly state society’s preferences in terms of the performance
trilemma between efficiency, reliability and equality. This defines social
acceptability in each of the three performance dimensions and determines how

86Minimization of total system cost can be considered as an approximation for social surplus
maximization under certain assumptions [80].
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far one can go in realizing efficiency improvements at the cost of inequality and
unreliability. Measures, such as new, smart technologies and flexibility devices,
as well as new types of contracts enabling consumers to make reliability-based
choices of electricity consumption, should be further investigated to realize a
prescribed trade-off between equality, efficiency and reliability. Moreover, TSOs
should carry out the proposed multi-dimensional analysis for their systems to
ensure practicality and applicability of the RMAC.

8.4 Application of the Classification Framework

Probabilistic reliability criteria are not yet used in practice in short-term
reliability management, but the EU FP7 project GARPUR has proposed and
analyzed an advanced, probabilistic, short-term reliability management approach
and criterion [80, 85]. The GARPUR approach can be analyzed by our proposed
classification framework along the four characteristics of Table 8.1:

1. The set of considered system states is determined using a discarding
principle, which neglects a subset of contingencies for which the expected
interruption cost is lower than a specified maximal, residual risk level.
This set differs for different time instants.

2. Load curtailment is allowed in considered system states.

3. The objective function is probabilistic and aims at minimizing total socio-
economic system cost.

4. A reliability target ensures that the probability of reaching unacceptable
system states is lower than a fixed tolerance.

In light of these four characteristics, the reliability approach proposed in
the GARPUR project resembles criterion (e) of the proposed classification
framework.87 As analyzed in Section 8.2.4, this category of criteria leads to a
lower ETC than deterministic criteria, without overly decreasing reliability.

87Where this paper focuses on four high-level characteristics of different reliability criteria,
the GARPUR project has focused more on the equally-important topic of the exact
implementation of probabilistic criteria and the tuning of decision parameters, such as
the set of considered system states [80, 85].
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8.5 Conclusion

This chapter has proposed a classification of short-term reliability management
approaches and criteria according to four characteristics. A case study has
illustrated how different RMACs can be compared in a multi-dimensional
analysis using three quantitative and two qualitative performance indicators.
This case study shows that the largest savings of expected total cost are due
to a trade-off between preventive and corrective actions. A smaller portion is
due to additionally including curtailment actions in the trade-off. Limits on
individual or aggregate unreliability levels decrease unreliability, but increase
expected total costs when compared to a fully probabilistic approach. Inequality
between consumers in terms of reliability for different RMACs depends on the
level of system stress.

In practice, equality, reliability and efficiency should be balanced, constituting
a ‘performance trilemma’. A transparent dialogue between power system
stakeholders is required about the trade-offs between efficiency, equality and
reliability to optimally handle the performance trilemma. Moreover, it is up to
TSOs to carry out the proposed multi-dimensional analysis for their systems,
which will facilitate the move towards an adequate reliability management
approach and criterion that considers both TSO’s capabilities and society’s
preferences.





Chapter 9

Conclusion

Reliability management approaches and criteria should be revised in the context
of evolving power systems. The currently used, deterministic N-1 criterion is
frequently questioned the last decade and a paradigm shift towards probabilistic
approaches might be needed to efficiently integrate renewable energy sources and
new technologies in power systems. To convince system stakeholders to move
towards alternative RMACs, performance of RMACs should be defined, changes
in performance when using an alternative RMAC should be adequately evaluated
and intermediate approaches that bridge the gap between the currently used N-1
criterion and a fully probabilistic approach should be provided. Although there
is a need to appropriately evaluate and compare performance of RMACs to
convince power system stakeholders to apply an alternative RMAC in practice,
the topic is not well covered in literature.

The main objective of this work is to contribute to the fundamental
understanding of evaluating and comparing performance of short-term
reliability management approaches and criteria, which can be formulated
in the main question: how to evaluate and compare different power system
reliability management approaches and criteria? Evaluation and comparison
of performance of RMACs consists of multiple aspects of which a subset are
addressed in this work by answering following questions:

1. How should performance of short-term RMACs be defined? Are all
necessary indicators available?

2. Which modules are required in a quantification framework to evaluate
and compare performance of short-term RMACs? What do they represent
and how do they interact?
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3. How can techniques that are applied in reliability assessment or other
performance evaluation contexts be applied to evaluate performance of
short-term RMACs, taking into account the typical characteristics of
performance evaluation of short-term RMACs?

4. How to define and assess inequality and inequity in a power system
reliability context?

5. What is the impact of the level of detail of value of lost load data on the
performance of short-term RMACs?

6. Which controllable factors of RMACs can bridge the gap between a
deterministic N-1 criterion and a fully probabilistic RMAC? What are the
trends in terms of different performance aspects?

Conclusions of the work are summarized in Section 9.1. Section 9.2 formulates
recommendations to the power system stakeholders. The research also brought
forward interesting topics for future research, which are discussed in Section
9.3.

9.1 General Conclusions

Conclusions of the work can be divided in three domains: (i) the performance of
RMACs, (ii) evaluation of the performance and (iii) dealing with the performance
trilemma between efficiency, reliability and equality.

9.1.1 Performance of RMACs

Performance of reliability management approaches and criteria is multifaceted
and consists of qualitative and quantitative aspects. A selection of
appropriate quantitative indicators is based on the provided classification and
characterization of indicators and indices (proposed to be) used in power system
reliability management.

A complete picture of performance should firstly consider the socio-economic
performance of RMACs, which can be quantified by socio-economic indicators
and indices. The ideal indicator of socio-economic performance is social surplus.
Due to data issues, this indicator is hard to apply in practice. It can be
approximated well by total system cost under some assumptions.

Secondly, technical performance of RMACs should be considered, which can
be verified in terms of adequacy and security indicators. Probabilistic, security
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indicators become more important in reliability management of systems with
increasing uncertainties. So far, coordinating organizations, such as ENTSO-E
and NERC, typically use a probabilistic assessment for generation adequacy,
but the proposed security indicators are mainly deterministic, lagging, physical
indicators to assess security of the system ex-post.

Thirdly, social acceptability of an RMAC is important. Besides the evaluation
of the absolute levels of reliability and interruption cost, it is important to assess
whether reliability is equally distributed among consumers. This work has
defined equality and equity in terms of power system reliability and proposed
summarizing indices to quantify the equality and equity of the distribution of
reliability between entities, e.g., nodes, consumer groups or individual consumers.

Fourthly, applicability of an RMAC should be assessed. Applicability is
influenced by data requirements. Probabilistic RMACs rely on additional data,
such as reliability and cost data, that are not readily available and sometimes
time consuming and/or costly to collect. Moreover, it might be hard to ensure
the accuracy of the data and confidentiality issues might come into play.

Fifthly, practicality or ease-of-use of the RMAC is also important, especially
from the perspective of the system operator. Alternative RMACs might require
the handling of a larger set of operating states, additional information and
indicators and a more complex trade-off between different cost terms.

9.1.2 Evaluation and Comparison of Performance

Evaluation of performance of RMACs has specific characteristics. Firstly,
performance evaluation requires that the complete decision-making trajectory
of a TSO according to a certain RMAC is evaluated besides the real-time
system state. The TSO decision-making process consists of multiple stages
and is affected by exogenous factors that are out of TSO’s control. Secondly,
performance evaluation should consider both normal and failure states to assess
the efficiency of the trade-off between preventive and corrective actions, whereas
reliability assessment mainly focuses on failure states.

A quantification framework that incorporates these characteristics has been
presented. The integrated, generic and modular design used in the presented
quantification framework goes beyond existing literature, which focuses on
selected issues, without analysing the full reliability problem in an integrated
manner. Due to the modular structure of the quantification framework, building
blocks can easily be replaced by more elaborated or detailed blocks with the
same functionality. A more extensive implementation of the quantification
framework, developed in the GARPUR project, is used by the French TSO to
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evaluate and compare its current decision-making behavior with the decisions
taken with an alternative RMAC.

The quantification framework consists of three main modules: (i) the simulation
module, (ii) the evaluation module and (iii) the comparison module. The
simulation module is fed by several sub-modules that model the contingencies,
external systems, such as demand, generation and the market, the transmission
system and the applied RMAC. The core of the simulation module is the security
constrained optimal power flow that simulates TSO’s decision-making behavior
for different RMACs.

Techniques for performance evaluation that can be applied in the evaluation
module are divided in analytical and simulation techniques and can be sequential
or non-sequential in nature. The applicability of each of the techniques depends
on the objective of the analysis. Performance evaluation is mainly challenged
by the long computation time of the mixed integer program of the SCOPF that
models TSO’s reliability management.

The comparison module provides a relative indication of the change in
performance if different RMACs are applied and benchmarks the RMACs
against an existing, well-known approach based on an N-1 criterion.

9.1.3 The Performance Trilemma

The ideal RMAC is cost-effective, results in a high reliability level and distributes
unreliability equally among consumers. However, a trade-off should be made
between efficiency, reliability and equality in practice, constituting a performance
trilemma.

Moving from the N-1 approach to a fully, probabilistic RMAC benefits from
intermediate steps to facilitate the practical implementation. These intermediate
steps can be realized by changing controllable factors of the RMAC that have
an impact on each of the performance aspects. A characterization of RMACs is
proposed based on four controllable factors: (i) the set of considered system
states, (ii) the objective function, (iii) the allowed real-time actions and (iv)
optional non-technical constraints.

Reliability management can be made more efficient by considering an adequate
set of operating states and applying a probabilistic objective function that
enables system operators to make a trade-off between preventive, corrective
and load curtailment actions. Efficiency gains are defined as reductions in
total system cost. A trade-off between preventive and corrective actions result
in significant efficiency gains, without implying a loss in terms of reliability



GENERAL CONCLUSIONS 167

or equality. The impact of considering curtailment actions in the trade-off
on the performance depends on the magnitude of value of lost load and the
degree of differentiation in the applied VOLL data. A theoretical analysis and
a numerical illustration of short-term reliability management both show that
incorporating detailed VOLL data that enable spatial and perfect curtailment,
leads to considerable efficiency gains. Equality between consumers in terms
of power system reliability reduces in the analysed test system. Efficiency
gains with no significant effect on equality can be obtained with VOLL data
with much temporal variability if temporal differentiation in VOLL is used.
However, VOLL data and their level of detail should be improved to fully reap
the potential.

Equality and equity in the system can be improved in a direct or indirect way.
Direct measures to reduce inequality focus on safeguarding consumers that are
unfairly treated at a certain point in time if load curtailment is required in
the future. Indirect measures focus more on redistributing the consequences
of unreliability. This reduces inequality in terms of net total consumer costs,
while inequality in terms of energy not supplied remains. Examples of indirect
measures are reliability-based transmission tariffs, a market for reliability, end-
consumer contracts where the price depends on the reliability level and bi-
lateral interruptible load contracts for small-scale consumers. Smart grids with
smart metering and demand-side management can also enable reliability-based
consumption choices of consumers. These choices represent the need or desire
of the consumer, which improves the equity, as consumers can indicate what
they need or desire.

A large set of possible measures exists to play on each of the three sides of the
triangle. However, a transparent dialogue between power system stakeholders
is required about the trade-offs between efficiency, equality and reliability to
optimally handle the performance trilemma shown in Fig. 9.1.

Performance

EfficiencyEquality

Reliability

Figure 9.1: The performance trilemma of short-term reliability management
approaches and criteria.
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9.2 Moving towards Probabilistic Reliability Man-
agement in Practice

Based on the outcomes of a discussion between system stakeholders about
the trade-offs that should be made in the performance trilemma of RMACs
and promising results obtained in a simulation context and pilot projects [55],
regulatory incentives should be put in place to stimulate the reassessment of
currently-used RMACs. This will facilitate the move towards an adequate
reliability management approach and criterion that considers both TSO’s
capabilities and society’s preferences.

If benefits are proven for different stakeholders and objectives are set, a
gradual implementation of alternative RMACs in practice can be initiated.
Recommendations for different power system stakeholders are formulated based
on the findings in this work. However, moving towards alternative reliability
management approaches and criteria is not straightforward, as this requires
changes in regulation, security standards and network codes. The procedure to
change regulation, security standards and network codes consists of multiple
stages and interactions between different stakeholders.

9.2.1 The Process of Changing Reliability Management Ap-
proaches and Criteria

Several stakeholders are involved in the move towards applying alternative
reliability management approaches and criteria in practice. In the end,
transmission system operators should apply the RMAC. They are by law
obliged to provide a minimal quality level for electricity.

European TSOs should comply with the European network codes developed by
ENTSO-E. These European codes are developed taking into account the non-
binding opinion and recommendations in framework guidelines of the Agency
for the Cooperation of Energy Regulators (ACER).88 The European network
codes developed by ENTSO-E are not intended to replace the necessary national
network codes for non-cross-border issues [236]. These national codes, standards
and regulations can be initiated by the TSOs themselves. The national codes
should be approved by the National Regulatory Agency (NRA). Alternatively,

88According to Regulation (EC) N°714/2009, the network codes have to facilitate the
harmonization, integration and efficiency of the European electricity market.
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national regulations can be enforced by the authorities in a law, e.g., the national
law regarding the organization of the electricity market in Belgium.89

Fig. 9.2 gives an overview of the interactions between the stakeholders involved
in developing and modifying operational security standards and regulations.

9.2.2 Recommendations to Power System Stakeholders

This work serves as a base to initiate a transition towards alternative
reliability management approaches and criteria. Recommendations for different
stakeholders to initiate this transition are formulated. Moreover, the conclusions
of the work are assessed in the context of the current Belgian Electricity law to
verify whether foundations already exist in practice to support the transition.

Conclusions of this Work in the Context of the Belgian Electricity Law

The Belgian electricity law states that regulation should contribute to the
development, in the most cost-effective way, of secure, reliable and efficient,
non-discriminating power systems, which are consumer oriented (Art. 23 §1.4).
Moreover, regulation should aim at a high level of universal and public service
in the context of electricity supply and should contribute to the protection
of critical/vulnerable consumers (Art. 23 §1.8) [237]. Article 23 §1.4 of the
Belgian electricity law is challenged by the performance trilemma introduced
in this work, as power systems should be cost-effective and efficient, reliable
and non-discriminating, implying equity or equality. This work has shown that
appropriate trade-offs should be made between efficiency, reliability and equality
to determine an acceptable reliability management approach and criterion.
Article 23 §1.8, on the contrary, puts constraints on the cost-effectiveness of
reliability management, as it implies a universal reliability level with special
protection for critical consumers. This implies in terms of VOLL differentiation
that temporal differentiation would be allowed, but that differentiation between
different consumers is limited to two consumer groups: critical and non-critical
consumers.

Authorities and Regulatory Agencies

The first step in the transition towards alternative RMACs is to clearly
state society’s preferences in terms of the performance trilemma. Sufficient

89National codes, standards and regulations can only be applied if they are more stringent
than the European network codes.
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Figure 9.2: Interactions between the stakeholders involved in changing
operational security standards, network codes and regulations.

possibilities exist to make an adequate trade-off between equality, efficiency and
reliability, given the potential of new, smart technologies and flexibility devices,
as well as new types of contracts enabling consumers to make reliability-based
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choices of electricity consumption. Reliability management approaches and
criteria that are able to handle these measures adequately might require a
paradigm shift compared to the traditional picture of reliable electricity supply.

A choice should be made between unconditional or individual reliability levels.
Is the objective to supply every consumer with a similar level of reliability,
irrespective of its transmission tariff, electricity price or location, or should the
price be explicitly linked with the reliability level, to enable consumers to choose
a different reliability level depending on the price. The technical evolutions of
smart meters and interruptible appliances, combined with contractual evolutions
such as priority and reliability contracts, make it possible to supply every
consumer with its preferred reliability level. This could range from receiving
a rebate in exchange for the possibility of some brief interruptions, as done in
the 20/20 rebate program in California [238], to offering complete reliability-
dependent retail contracts. These possibilities will open up the debate of the
unconditional provision of a basic and necessary good, such as electricity.

Transmission System Operators

The paradigm shift might take a long period, but transmission system
operators can already take actions in the short term to gradually move towards
probabilistic reliability management approaches and criteria. TSOs can verify
the applicability and practicability of probabilistic reliability management
approaches. It is important to make an assessment of additional data that are
required and whether these data are available or if certain issues might arise in
terms of availability, integrity or confidentiality. Moreover, they should carry
out the proposed multi-dimensional analysis of alternative RMACs in their
own systems to verify the impact of different controllable factors in practice.
A first controllable factor that requires attention is the set of system states
considered in reliability management. Adequate state selection, eventually
resulting in sets of system states that differ over time, can lead to quick wins in
terms of cost-effectiveness compared to the currently used N-1 criterion without
having a large impact on reliability and equality. A second aspect to focus on is
the trade-off between preventive and corrective actions. N-1 favors preventive
actions resulting in overly conservative decision making at certain time instants.
Technologies, such as phase-shifting transformers and switching actions, which
are already available, and demand-side response and storage, which might
become more mature in the future, increase the short-term flexibility in power
systems, which reduces the need for redundancy.

An important choice to be made in this context on the long term is about
an appropriate trade-off between redundancy and flexibility: Do we invest in
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more cables and transmission lines to make our power system more reliable or
do we focus on using our current infrastructure more efficiently by investing
in flexibility devices, such as phase-shifting transformers, demand response,
batteries, series compensation and other flexible alternating current transmission
system (FACTS) devices. The optimal choice will probably involve both
investment in redundancy and flexibility. Probabilistic approaches for reliability
management have the advantage of making this choice more explicit compared
to the currently used N-1 criterion. A related choice is the decision between
repair and replace: Do we invest in new assets or do we repair, refurbish or
retrofit the assets. Again, probabilistic approaches can help in this decision
making by more explicitly considering costs and benefits.

9.3 Future Work

The transition from reliability-centred, deterministic reliability management
towards fully probabilistic reliability management based on socio-economic
principles requires a paradigm shift. The availability of an unconditional,
reliable electricity supply is embedded in culture and society in Europe. However,
evolutions in power systems and the possibilities that come with them raise
the question whether this is still the way to go or whether a new value
system regarding the fairness and appropriateness of the reliability level is
required to fully exploit potential efficiency improvements of probabilistic
reliability management. The management of the transition towards cost-effective,
socially acceptable and practically applicable reliability management is a multi-
disciplinary task, involving social science, engineering science and applied
mathematics.

This thesis touched upon several research topics in the context of performance
evaluation of RMACs. Three main domains on which significant advancements
can be made based on the conclusions and findings in this work can be
distinguished: (i) performance evaluation of RMACs, (ii) social and economic
acceptability of RMACs and (iii) technical acceptability, applicability and
practicality of RMACs.

9.3.1 Performance Evaluation

Significant advancements can be made in the context of performance evaluation
techniques. Research in this field is limited so far, although performance
evaluation of RMACs has its own characteristics. Reductions in computation
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time are important due to the long simulation time of TSO decision-making
behavior, especially in large systems.

Research effort should be placed on the development of more efficient
performance evaluation techniques. Emulation is promising in this respect,
because it reduces the number of computationally intensive simulations by
evaluating an approximate analytical function. Alternatively, the development
of pseudo-sequential simulation techniques requires more attention. These
techniques can capture the dynamic process of decision making in reliability
management, while optimizing the duration of the period under evaluation.

Significant reductions in computation time of simulation techniques can also
be obtained if adequate variance reduction techniques are applied, such as
importance sampling and the principle of control variates [239]. However, many
algorithms available to reduce the computation time in composite reliability
assessment, such as importance sampling [240] and state space pruning [132],
cannot be directly applied in performance evaluation. They focus on the failure
states with load curtailment. In performance evaluation, the importance of a
system state is not determined by the fact whether it is a failure state or not,
but by the values of the different performance indicators under evaluation.

Performance evaluation is also challenged by the uncertainty on the input data.
Failure rates and repair rates of components are, for instance, not exactly known
due to the low probability of occurrence of failures, while the results are sensitive
to this kind of information. Although the data are not exact, evaluations are
typically based on one single value for these parameters. To propagate the
uncertainty related to these parameters in the result, imprecise probability
methods, such as probability bounding, should be applied [241].

To reduce the simulation time of the decision-making behavior, the potential
of proxies determined with machine learning techniques to model shorter-
term decision-making stages in the decision-making process should be further
exploited [242] and optimization solvers should be further improved in terms of
accuracy and speed.

In terms of indicators used in a reliability context, future work should focus
on further development of risk-based, leading, probabilistic, security and socio-
economic indicators that can be used to guide the decision-making process of
reliability management towards cost-effective decisions. However, besides the
definitions of the indicators, a guideline to determine appropriate thresholds for
the indicators in different systems is as important.
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9.3.2 Social and Economic Acceptability of RMACs

Measures, such as reliability-based transmission tariffs, a market for reliability,
end-consumer contracts where the price depends on the reliability level, bi-
lateral interruptible load contracts for small-scale consumers and the practical
implementation of new technologies, such as smart meters and other smart
devices, have the potential to influence the efficiency, reliability and equality
of RMACs. Future work in this context has to focus on the one hand on
the careful design of these measures. The proposed inequality and inequity
indices can be usefully applied to evaluate the impact of such measures on the
distribution of unreliability and its consequences among consumers. The trade-
off between efficiency, reliability and equality is on the other hand influenced
by the controllable factors of RMACs. More theoretical and applied research is
needed on the intermediate steps between the deterministic N-1 criterion and
probabilistic criteria. This will lead to practical points of reference for TSOs
to bridge the gap between them, which improves the practicality of alternative
RMACs.

Future work should also look into formal statistical decision theoretic frameworks,
such as multi-attribute utility theory, to deal with the three aspects in the
performance trilemma.

9.3.3 Technical Acceptability, Applicability and Practicality of
RMACs

Technical acceptability of RMACs can be improved by considering concerns
of TSOs regarding the application of security constrained optimal power flow
formulations. Especially, stability issues due to topological actions are an
important concern of system operators. SCOPF formulations in theory search
for the most optimal topological action among all possible topological changes.
However, the considerable amount of binary variables involved in this decision
making increases the computation time and the stability of the different cases
is not verified. Therefore, system operators suggest to harvest the operator’s
knowledge in the SCOPF algorithms, by only focussing on a predefined list of
topological actions for which the stability is verified. Moreover, the SCOPF
formulations are not 100% reliable as they do not converge in all cases if no
approximations are made. The number of cases for which this happens can be
reduced by improving the algorithms. Other aspects that can be considered in
the modeling of TSO’s decision-making behavior are the cross-border effect of
reliability targets applied in neighboring control zones.
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Applicability of RMACs is mainly determined by their data requirements. Due
to the sometimes long and expensive data collection process, it is important
to determine which data mostly impact the performance of RMACs. Also the
impact of the accuracy of the data on the performance of RMACs should be
assessed.

Appropriate decision support tools can improve the practicality of probabilistic
RMACs. These tools should clearly visualize the increased amount of
information and indicators that should be handled in advanced RMACs.
An appropriate trade-off should be made between the level of detail of the
information and the clarity of the visualization.





Appendix A

Overview and Classification of
Indicators

A multitude of indicators and indices is presented and described in literature,
ranging from indicators and indices used in a practical context to more theoretical
indicators and indices that are suggested for future reliability management.
Traditional reliability management approaches and criteria (RMACs) are
deterministic in nature and are mainly based on physical indicators. However,
traditional, deterministic RMACs might be overly conservative or too loose
and therefore not cost effective. Alternative risk-based RMACs are proposed in
literature, which take into account uncertainties in the system more adequately
[59, 60, 85, 243, 244, 245, 246]. Moreover, cost minimization measures might
be included to improve the cost-effectiveness of reliability management. Each
of these RMACs is based on a specific set of indicators and indices.

This section gives an overview of practical indicators and indices that are
prescribed by ENTSO-E and NERC or discussed by the CEER, as well as
indicators and indices discussed in scientific literature. The indicators and
indices are classified in the classes discussed in Section 3.3 and the characteristics
discussed in Section 3.2 are assigned to them.

A.1 Adequacy Indicators

NERC prescribes to evaluate resource adequacy probabilistically based upon
reserve margin projections and emerging risks that have been identified in

177
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a long-term reliability assessment. The long-term reliability assessment is a
peak-driven, deterministic approach to gage resource adequacy. NERC defines
five probabilistic adequacy indices in their guidelines that are complementary
to the deterministic approach [247, 248].

• Expected Unserved Energy (EUE): A measure of the resource availability
to continuously serve all loads at all delivery points while satisfying all
planning criteria [MWh]. The expected amount of energy not supplied by
the generating system during the period of observation, due to capacity
deficiency [249].

• Loss Of Load Hours (LOLH): The expected number of hours per year
when a system’s hourly demand is projected to exceed the generating
capacity.

• Loss of load expectation90 (LOLE): The expected number of days per
year for which the available generation capacity is insufficient to serve the
daily peak demand.

• Loss Of Load Probability (LOLP): The probability of system daily peak
or hourly demand exceeding the available generating capacity during a
given period.

• Loss Of Load Events (LOLEV): The number of events in which some
system load is not served in a given year.

To verify the HLII adequacy and security, NERC defines an Adequate Level
of Reliability (ALR) in terms of reliability standards [66]. The objective is to
obtain standards that balance the cost of risk mitigation and the cost of risk
itself. System performance metrics are defined to verify the reliability standards
and to provide feedback for improving them.91 Part of NERC’s indicators to
verify the adequate level of reliability are adequacy oriented:

• ALR1-3: Planning reserve margin

• ALR6-2: Energy emergency alert 3 (firm load interruptions due to capacity
and energy deficiencies)

90Sometimes also denoted as Loss of Load Expectancy.
91A more detailed definition and description of each of the different ALR

indices can be found at http://www.nerc.com/comm/PC/Performance%20Analysis%
20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%
2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&
FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D

http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
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• ALR6-3: Energy emergency alert 2 (deficient capacity and energy during
peak load periods)

The other indicators are mainly system security oriented.

ENTSO-E initially prescribed a deterministic approach for system adequacy
assessment, which was based on the point with the highest load. Due to the
increasing penetration of RES and the increasing uncertainty that comes with it,
a gradual movement towards a probabilistic approach is initiated with ENTSO-
E’s target methodology for adequacy assessment [250]. This methodology
proposes to use a set of 5 indicators in a generation adequacy assessment.
Besides LOLE and LOLP, which are also proposed by NERC, these indicators
are:

• Full load hours of generation: The time needed to produce the total
energy under full load conditions of the generators, which represents the
utilization rate of the generation park

• RES curtailment: Amount of energy from renewable energy sources that
cannot be produced due to security reasons

• CO2 emissions: Amount of CO2 emissions

Loss of load probability (LOLP), loss of load expectancy (LOLE) and expected
unserved energy (EUE)92 are frequently used in a practical context of adequacy
assessment. They are suggested by NERC and used e.g., in Belgium, Finland,
France, Great Brittain, Hungary, Ireland and the Netherlands in a probabilistic
assessment to verify generation adequacy. Also in scientific literature, these
indicators are frequently suggested [18, 251]. Newell et al. propose to use
normalized expected unserved energy (EUE) for setting the resource adequacy
standard, because it is a more robust and meaningful measure of reliability that
can be compared across systems of many sizes, load shapes and uncertainty
factors [252]. In Spain and Sweden, generation adequacy is verified in terms of
the capacity margin, which is a deterministic indicator [79, 105].93 This is a
very simple indicator, but not appropriate in systems with a significant amount
of intermittent generation [111].

92Sometimes also denoted as loss of energy expectation (LOEE) or expected energy not
supplied/served (EENS) in a generation adequacy context, which have the same definition
[18]. A slight difference with EENS is that EENS is not only used in a generation adequacy
context, but is also applied on the HLII and HLIII level.

93Capacity margin is defined as the proportion by which the total expected available
generation exceeds the maximum expected level of electricity demand, at the time at which
that demand occurs [253].
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Adequacy assessment of the transmission system (HLII) is the responsibility of
the individual countries in Europe [111]. Indicators used by system operators
to assess the adequacy of their composite generation and transmission systems
are [111, 251]:

• Expected energy not supplied (EENS): The expected total summated
energy not supplied to any of the load buses irrespective of the cause and
the location of the deficiency

• Energy Index of Unreliability (EIU): EENS normalized by the total energy
demanded

• Energy Index of Reliability (EIR): EIR = 1-EIU

• System minutes: EENS normalized by peak demand representing
equivalent minutes of unavailability.

• LOLEP95: The expected number of hours during which load cannot be
covered by all available means in a very cold winter, i.e., a critical scenario

• Average Interruption Time (AIT): A measure for the amount of time that
the supply is interrupted, expressed as the total number of minutes that
the power supply is interrupted during the year [111].

The definition of LOLE differs between sources. NERC defines LOLE as the
expected number of days per year with a deficiency calculated based on the
peak load per day or a load curve [247]. In Europe, LOLE is defined as the
expected number of hours per year during which it will not be possible for all
the generation resources available to the system to cover the load, even taking
into account the interconnections [111]. The latter is equivalent to the LOLH
defined by NERC or can also have the notion of an hourly LOLE. A frequently
used LOLE threshold is the industry-accepted reliability standard of 1 day in
10 years or 0.1 days/year [254]. It is important to notice that this does not
corresponds to a LOLH of 2.4h/year, because the LOLH corresponding to a
LOLE of 0.1 days/year can be significantly higher.

A set of other local and zonal indices that can be used in composite generation
and transmission system evaluation (HLII) is proposed in [18] and [251]. EENS
can be used as an adequacy indicator at different hierarchical levels. The
distinction depends on the primary cause of the interruption, which can be lack
of power (HLI), lack of interconnection (HLI and HLII), line overload (HLII)
or network splitting or isolated nodes (HLII). A drawback of EENS is that it
cannot be used to compare different systems. This requires a normalization
[111]. Adequacy indicators that can be used on HLIII are discussed by Allan and
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Billinton [18]. Moreover, an IEEE standard is created focussing on distribution
adequacy indicators [255]. Although these indicators are referred to as reliability
indices in [255], their main focus is on adequacy aspects. Most commonly-used
adequacy indicators on the distribution level (HLIII) in Europe are SAIFI and
SAIDI94 [256].

An overview and characterization of the different adequacy indicators is given
in Table A.1. Existing literature makes a clear distinction between the different
hierarchical levels. However, due to the increasing amount of distributed
generation, the distinction becomes much less clear and composite evaluations
will become more important.

A.2 Security Indicators

To verify security-related standards of the adequate level of reliability, NERC
has defined some security related indicators [66]:95

• ALR1-4: Bulk power system transmission related events resulting in loss
of load

• ALR1-5: Transmission system voltage profile

• ALR1-12: Interconnection frequency response

• ALR2-3: Activation of underfrequency load shedding

• ALR2-4: Average percent non-recovery disturbance control standard
events

• ALR2-5: Disturbance control events greater than most severe single
contingency

• ALR3-5: Interconnected reliability operating limit/system operating limit
exceedances

94SAIFI stands for System Average Interruption Frequency Index, which represents the
number of consumer interruptions divided by the number of consumers served, while SAIDI
stands for System Average Interruption Duration Index and represents the sum of consumer-
sustained outage minutes per year divided by the number of consumers served [111].

95A more detailed definition and description of each of the different ALR
indices can be found at http://www.nerc.com/comm/PC/Performance%20Analysis%
20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%
2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&
FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D

http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
http://www.nerc.com/comm/PC/Performance%20Analysis%20Subcommittee%20PAS%20DL/Forms/AllItems.aspx?RootFolder=%2fcomm%2fPC%2fPerformance%20Analysis%20Subcommittee%20PAS%20DL%2fApproved%20Metrics&FolderCTID=0x0120007EFA0B77D434004AA06B4964C0C6F33D
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• ALR4-1: Automatic transmission outages caused by failed protection
system equipment

• ALR6-1: Transmission constraint mitigation

• ALR6-11: Automatic AC transmission outage initiated by failed protection
system equipment

• ALR6-12: Automatic AC transmission outages initiated by human error

In 2013, ENTSO-E published the second version of the network code on
operational security, which prescribes that European transmission system
operators should monitor deterministic security indicators based on a state
classification. According to this network code, the TSO shall classify the system
state based on 5 well-defined categories: normal, alert, emergency, in-extremis
and restoration. Dy Liacco presented the 3 state security-state diagram in 1967
[260] and an extended 5 state version was proposed by Fink and Carlsen in
1978 [261]. Billinton and Khan proposed in 1992 to calculate frequency and
probability of being in a particular state as security indicators [262].

In 2015, ENTSO-E started merging the three operational network codes
(operational planning and scheduling, operational security and load frequency
control and reserve) in a single system operation guideline. This guideline
prescribes that in operational planning five indicators should be calculated that
count the number of events due to a certain cause that result in a degradation
of system operation conditions [87]:

• OPS 1A: The number of events per year that result in a degradation of
system operation conditions due to an incident on the contingency list

• OPS 1B: The number of events in OPS 1A caused by an unexpected
discrepancy of demand or generation forecasts

• OPS 2A: The number of events per year that result in a degradation of
system operation conditions due to Out-of-Range contingencies

• OPS 2B: The number of events in OPS 2A caused by an unexpected
discrepancy of demand or generation forecasts

• OPS 3: The number of events per year that result in a degradation of
system operation conditions due to lack of active power reserves

OPS 1B and OPS 2B focus on the impact of uncertainty due to RES and load,
which becomes more important in modern power systems.
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Besides the indicators for operational planning, a multitude of performance
indicators should be reported annually in the context of operational security
[87]. This set of indicators consists of indicators representing the frequency of
an event, as well as indicators representing the duration and/or magnitude of
events:

• RT1: Number of tripped transmission system elements per year per TSO;

• RT2: Number of tripped power generation facilities per year per TSO;

• RT3: Energy not supplied per year due to unscheduled disconnection of
demand facilities per TSO;

• RT4: Time duration and number of instances of being in the alert and
emergency states per TSO;

• RT5: Time duration and number of events within which there was a lack
of reserves identified per TSO;

• RT6: Time duration and number of voltage deviations exceeding the
voltage ranges specified in [87]

• RT7: Number of minutes outside the standard frequency range and number
of minutes outside the 50% of maximum steady-state frequency deviation
per synchronous area

• RT8: Number of system-split separations or local blackout states

• RT9: Number of blackouts involving two or more TSOs

RT4, RT5 and RT6 are bi-parametric rather than mono-parametric indices, as
they include both the duration and frequency of the event.

Ni et al. [41], Ciapessoni et al. [114] and Dissanayaka et al. [115] proposed some
probabilistic security indicators, such as low voltage risk indicator, overload risk
indicator, voltage instability risk indicator, cascading risk indicator, overloading
risk indicator, high current risk indicator and transient stability risk indicator.
These risk indicators combine the magnitude and the probability of a security
limit violation. Kirschen et al. have developed a probabilistic indicator of
system stress that can be used complementary to the N-1 approach in power
system operation. This probabilistic indicator is based on expected energy not
served (EENS). It is a probabilistic, leading indicator that enables operators
to implement preventive measures and plan corrective measures taking into
account probabilities and consequences of contingencies [45].
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An overview of the security indicators is given in Table A.2. To evaluate the
security indicators, busbar voltages, active power flows, reactive power flows
and frequency should be monitored [87].

A.3 Socio-Economic Indicators

The ideal reliability level is obtained at maximal socio-economic surplus.96
Socio-economic surplus is the sum of surplus or utility of all stakeholders,
including external costs and benefits (e.g., environmental costs) over the expected
operating range [80]. Total system cost minimization equals socio-economic
surplus maximization under two simplifying assumptions: (i) changes in the
electricity market should not change the behavior of electricity market actors
such as producers and consumers and (ii) changes in the electricity market
should have little effect on other markets [80].97

He et al. denote total system cost as the social cost consisting of the operating
cost, which depends on the generated power and the operating cost function of
the generators, and the interruption cost, where the interruption cost depends
on the amount of load curtailment and the customer interruption cost function
[59]. Besides the generator costs, other costs should be included in the operating
cost, such as the cost of line switching, reactive power management, PST tap
changing and other reliability actions that can be taken. The cost of these
actions is typically lower than the generator costs, but cannot be neglected.
Operating cost is an activity indicator rather than an outcome indicator.

Allan and Billinton specify the Customer Interruption Cost (CIC) and Customer
Outage Cost (COC) [18]. CICs are interruption costs per interruption and are
used to determine the Composite Customer Damage Function (CCDF) and
Sector Customer Damage Function (SCDF). CICs are typically determined
based on surveys. COCs at a particular bus can be deduced from the CDFs,
the energy consumed by consumers at that bus and failure rates and repair
times, i.e., the frequency of the outage and the outage duration. The SCDFs
can be converted into global indices of value of lost load (VOLL) or Interrupted
Energy Assessment Rate (IEAR) [263]. VOLL expresses the value of unserved
energy at a particular location, type of consumer and moment in time, for a
particular duration and a particular type of interruption. It is the marginal
interruption cost with respect to energy not supplied, i.e., the interruption cost

96Practical indicators differ from ideal indicators in the sense that practical indicators
should be easy to use and all data to calculate the indicator should be available.

97These assumptions are never fully met. If, for instance, electricity becomes more expensive
and consumers’ price elasticity is less than one, consumers will buy less electricity and will
have less budget to buy other goods.
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Table A.2: Classification of security indicators.

Indicators (1) (2) (3) (4) (5) (6) (7) Reference

Low voltage risk indicator

x o o o o o x

[41]
Voltage instability risk indica-
tor [41]
Cascading risk indicator [41]
Overloading risk indicator [41]
High current risk indicator [114]
Transient stability risk indica-
tor [115]
Loss of load risk indicator [114]
Expected energy not served [45]
ALR1-12

o x o o o x o
NERC

ALR6-1 NERC
RT3 ENTSO-E
ALR1-4

o o o x o x o

NERC
ALR2-3 NERC
ALR2-4 NERC
ALR2-5 NERC
ALR3-5 NERC
ALR4-1 NERC
ALR6-11 NERC
ALR6-12 NERC
OPS1A ENTSO-E
OPS1B ENTSO-E
OPS2A ENTSO-E
OPS2B ENTSO-E
OPS3 ENTSO-E
RT1 ENTSO-E
RT2 ENTSO-E
RT8 ENTSO-E
RT9 ENTSO-E
Average number of voltage vio-
lations/load point1 [18]

ALR1-5 o o o o x x o NERC
RT7 ENTSO-E
Expected number of volt-
age violations1 o o o x o o x [18]

RT4
o o o x x x o

ENTSO-E
RT5 ENTSO-E
RT6 ENTSO-E

(1) Risk, (2) Magnitude, (3) Probability, (4) Frequency, (5) Duration,
(6) Deterministic, (7) Probabilistic
o = not applicable, x = applicable
1 This indicator was denoted as an adequacy indicator in [18], however,
this does not correspond with the definitions of adequacy and security
indicators.
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of an additional 1 MWh interruption [80]. Another indicator that quantifies
the value of reliability is the willingness-to-pay (WTP), which represents the
consumers’ willingness to pay to improve their continuity of supply [111]. VOLL,
IEAR and WTP can be considered as criticality indicators, as they represent
how critical reliable electricity supply is for consumers. VOLL is the most
widely used indicator and referred to by ENTSO-E [111, 264].

Based on these criticality indicators, the monetary consequences of interruptions
for consumers can be estimated. Different indicators to quantify the monetary
consequences of interruptions can be distinguished, but no unified terminology
exists for the indicators. Allan and Billinton define ECOST as the product
of IEAR and LOEE and denotes this as expected outage cost. Zhang and
Billinton on the contrary specify ECOST as the annual expected customer
damage cost at a specified system service area or load bus. ECOST is in this
case based on the expected energy not supplied (EENS) and the composite
customer damage function [265].98 Wang and Billinton use the same formula for
ECOST as Zhang and Billinton, but they give ECOST two different meanings:
"expected customer interruption cost" and "total system interruption cost" [266].
They can be considered as a local and a zonal indicator respectively. In the
GARPUR project, (expected) interruption costs are defined as the product of
the (expected) energy not supplied and the value of lost load and represent the
negative economic impact on electricity consumers of an electricity interruption
[80]. This indicator is sometimes also denoted as social value of EENS [111].

Table A.3: Classification of socio-economic indicators.

Indicators (1) (2) (3) (4) (5) (6) (7) (8) (9) Reference

Social welfare/surplus1 o x o o o x x x o [80]
Total system cost1 [59]
Customer outage cost

o x o o o o x x o
[18]

Customer interrup-
tion cost [18]

ECOST
x o o o o o x o x

[18, 265, 266]
Expected interruption
cost [80]
Social value of EENS [111]
Operating cost o x o o o x o x o [59]

(1) Risk, (2) Magnitude, (3) Probability, (4) Frequency, (5) Duration,
(6) System, (7) Consumer, (8) Deterministic, (9) Probabilistic
o = not applicable, x = applicable
1Both system and consumer related

98LOEE, EENS and EUE are essentially the same [18].
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A.4 Reliability Indices

NERC’s definition of reliability consists of two concepts: adequacy and
security.99 This definition is further refined with the identification of specific
characteristics that define an adequate level of reliability (ALR) [66, 267]:

• The system is controlled to stay within acceptable limits during normal
conditions

• The system performs acceptably after credible contingencies

• The system limits the impact and scope of instability and cascading
outages when they occur

• Facilities are protected from unacceptable damage by operating them
within facility ratings

• Integrity can be restored promptly if it is lost

• The system has the ability to supply the aggregate electric power and
energy requirements of the electricity consumers at all times, taking into
account scheduled and reasonably expected unscheduled outages of system
components

In 2007, NERC proposed three major indices, which intend to capture
and represent multiple reliability parameters in easy-to-understand reliability
performance metrics [110, 268]:

• Reliability performance gap: To measure how far the system is from
expected performance under contingencies100

• Adequacy gap: To measure the capacity and energy shortage from the
expected adequacy level under steady-state conditions101

• Violation index: Index based on standardized weights depending on the
predefined impact of violating a standard (Violation risk factor (VRF))
and the ex-post assessment of the degree of violation (Violation severity
level (VSL)) to measure the reliability improvement from compliance with
NERC reliability standards [110]

99Security is denoted as operating reliability in a NERC context.
100http://www.nerc.com/pa/RAPA/PA/Pages/ReliabilityPerformanceGap.aspx
101http://www.nerc.com/pa/RAPA/PA/Pages/AdequacyGapQuarterlyView.aspx

http://www.nerc.com/pa/RAPA/PA/Pages/ReliabilityPerformanceGap.aspx
http://www.nerc.com/pa/RAPA/PA/Pages/AdequacyGapQuarterlyView.aspx
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In 2010, NERC proposed a severity risk index (SRI)102 and an integrated
reliability index (IRI). The IRI consists of three risk-based indices: An event
driven index (EDI), a condition driven index (CDI) and a standards/statute
driven index (SDI). These three indices are combined in the IRI with appropriate
weighing factors. The event severity risk index is developed to measure the
relative severity ranking of events based on event occurrence rate and their
impact to the bulk power system, which can be among multiple dimensions, e.g.,
load or facilities. Different events are combined in the event driven index (EDI).
The CDI is an integrated index that combines the different ALR indicators in
a single index with appropriate weighing factors. In order to integrate indices
that have different units, five trend ratings are identified to quantify each
metric’s performance level. The SDI verifies the risk of non-compliance with
the standards, taking into account the risk of violating the standards and the
impact of this violation [267]. A consultation of power system stakeholders
resulted in feedback and comments on the developed indices, such as about the
indices’ transparency, the practical meaning of the values of the indices and
how to react upon them and the values of the weight factors that are used and
how to choose them [269].

Perceived reliability is a function of the proximity of the system operation to the
operational limits and the individual component reliability. Examples of general
component reliability indicators are time to repair, operating time between
failures, failure rate, failure intensity, . . . [44, 270]. Reliability or performance
indicators are defined specifically for certain components. For instance for
power plants indicators are defined, such as unit capability factor, unplanned
capability loss factor, time availability factor, capacity factor, net electrical
energy production, forced outage rate, equivalent forced outage rate, commercial
availability, etc. These indicators differ between different types of generating
units [105]. A detailed discussion of component reliability indicators is out of
the scope of this work.

A.5 Discussion

Security indicators specified by NERC and ENTSO-E are still mainly lagging
and deterministic. The lagging, physical, deterministic indicators are especially
suitable to evaluate the decision making ex-post, i.e., if the uncertainty is
already reduced, in order to verify whether reliability standards are satisfied.
Probabilistic, leading security indicators can help in being pro-active to handle
uncertainties in power systems. NERC initiated the transition towards more

102Updated in 2014 [116]
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Table A.4: Classification of reliability indices.

Indicators (1) (2) (3) (4) (5) (6) (7) (8) (9) Reference

Probability of failure1 o o x o o x o o x [18]
Severity risk index o x o o x x o x o NERC
Event driven index NERC
Standards /
statute driven index x x o o o x o x o NERC

Condition driven index o x o o o x o x o NERC
Reliability perfor-
mance gap o o o x o x o x o

NERC
Adequacy gap NERC
Violation index NERC

(1) Risk, (2) Magnitude, (3) Probability, (4) Frequency, (5) Duration,
(6) System, (7) Consumer, (8) Deterministic, (9) Probabilistic
o = not applicable, x = applicable
Indicators with multiple x in the same section of the table combine
multiple characteristics
1 This indicator is denoted as HLII adequacy indicator in [18], but
can be better classified as a reliability index.

probabilistic reliability management in both long term and short term, but the
major efforts in terms of probabilistic indicators are found in scientific literature.

NERC focuses a lot on system performance indicators. It has developed
integrated reliability indices, combining different aspects in one value. The
advantage of these integrated indices is that focusing on less, well selected
indices reduces the complexity of reliability management. However, integrated
indices are perceived as less transparent and the values are hard to interpret and
react upon adequately, especially with limited user experience. Their practical
applicability and usefulness should be proved [269]. ENTSO-E on the contrary
puts less effort in developing overall performance indices. However, in contrast
to NERC, ENTSO-E is more actively concerned about the socio-economic
aspects. It recognizes the impact of interruption costs on the economic value
of reliability [111]. Its adequacy indicators are also more directly related to
the issue of increasing RES penetration. CEER recommends to harmonize the
adequacy indicators used by TSOs to verify the continuity of supply. It suggests
to use SAIDI and SAIFI for long interruptions, MAIFI for short interruptions
and ENS for interruptions at the transmission level. The calculation and
weighting methods should be harmonized as well [106]. Also the proposal
for the Clean Energy Package includes directives to harmonize the risk and
reliability assessment. It suggests to monitor the security of electricity supply
using EENS [GWh/year] and LOLE [h/year] [271].





Appendix B

GARPUR Quantification
Platform

The quantification framework discussed in Chapter 4 is the base for the
GARPUR Quantification Platform (GQP) discussed in [129]. The GQP, which
can be considered as a more advanced implementation of the quantification
framework discussed in this thesis, was implemented in collaboration with
colleagues of the ELECTA research group and other academic and industrial
project partners.

The prototype of the GQP has been designed to serve as a general-purpose
platform for evaluating different RMACs in different contexts using numerical
simulations. It is designed to cover day-ahead operational planning and real-
time operation. Alternative short-term RMACs are benchmarked against the
currently used N-1 approach to assess the socio-economic impact and the impact
on reliability.

A more detailed and sophisticated implementation of the GQP is used in a pilot
test performed by the French transmission system operator RTE. This pilot
test uses the GQP in a near real-life context. The focus of the test is on a part
of the French control zone. Advancements are made in the implementation
of the SCOPF to simulate TSO’s decision-making behavior according to a
certain RMAC: A short-term post-contingency system state is added, risk of
failure of corrective actions is considered, contingency relaxation is implemented
and alternative approximations of the AC SCOPF are applied. Converters
to pre-process CIM data and PSS-E raw data are developed to be able to
use data formats commonly used by TSOs. Full details of the more detailed
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implementation of the GARPUR quantification platform can be found in [140].
Also the post-processing of the results, calculation of indicators and modeling
of contingencies are part of the scope of the GQP. The performance evaluation
techniques, performance metric and inequality index proposed in this dissertation
can be used in the evaluation module of the GQP.



Appendix C

DC Power Flow Assumptions

The security constrained optimal power flow used to simulate TSO’s decision-
making behavior according to a certain RMAC is based on a DC power flow. This
appendix elaborates on the assumptions made in a DC power flow formulation
and their validity.

C.1 Power Flow Equations

The implementation used in the case studies is based on a DC SCOPF [272].
This problem can be formulated as a linear and convex optimization program.
The three basic assumptions underlying a DC SCOPF are:

• The resistance of each branch is negligible compared to its reactance

• The voltage magnitude at each node equals the base voltage

• The voltage angle difference across any branch is sufficiently small, i.e.,
cos(θb1 − θb2) ≈ 1 and sin(θb1 − θb2) ≈ θb1 − θb2

with θb the voltage angle at node b. To reduce the chance of numerical instability,
the DC SCOPF is typically formulated in normalized Per Unit (pu) values.

Taking into account these assumptions in the traditional AC power flow
equations results in the simplified DC formulation of power flow. The active
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power branch flow equation can be expressed as:

Lb1b2 = 1
xlineb1b2

(θb1 − θb2) ∀ branches (C.1)

with xlineb1b2
the reactance of the branch between node b1 and b2. Kirchoff’s first

law can be expressed as:∑
u∈U

Pu,b2 +
∑
j∈J

P loadj,b2
+
∑
b1∈B
b1 6=b2

Lb1b2 = 0 ∀b2 ∈ B (C.2)

Pinj = BDC ·Θ (C.3)

with Pu,b the active power generation of generation unit u at node b, P loadj,b the
active load of consumer j at node b, BDC the admittance matrix for DC power
flow, Θ the vector of voltage angles and Pinj the net active power injections at
the different nodes. Eq. (4.3) and (4.5) consist of Eq. (C.1) and (C.3), resp.
for the initial state and for all considered states s ∈ S.

C.2 Lossless Transmission Lines

Each network element causes a small energy loss that is dissipated in the
resistance of the network element. The R/X ratio is typically used to characterize
the impact of the loss on the result of power flow calculations. This R/X ratio
is typically between 0.08 and 0.3 for an overhead line, because the reactance is
usually many times larger than the resistance. The R/X ratio of a cable system
on the other hand equals nearly one. Values of typical reactance and resistance
values for different voltage levels in the Belgian transmission system are given in
Table C.1. The high-voltage system mainly consists of overhead lines resulting
in low R/X ratios, whereas the medium-voltage system has a higher R/X ratio
due to the higher amount of cable connections. Also the European transmission
system mainly consists of overhead lines, resulting in low R/X ratios.

DC power flow assumes lossless transmission lines, i.e., the resistance is assumed
to be much smaller than the reactance of the line. Purchala et al. state that
neglecting the resistance can be considered to be valid if R/X is smaller than
0.25 [274].
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Table C.1: Resistance and reactance values in the Belgian power system [273,
274].

Voltage [kV] 380 220 150 70

Resistance [Ω/km]
min 0.025 0.038 0.018 0.034
avg 0.031 0.067 0.090 0.174
max 0.038 0.088 0.292 0.425

Reactance [Ω/km]
min 0.278 0.184 0.071 0.034
avg 0.325 0.364 0.374 0.360
max 0.353 0.429 1.458 0.756

R/X [/]
min 0.080 0.125 0.238 0.111
avg 0.095 0.182 0.238 0.083
max 0.119 0.286 1.000 1.250

C.3 Small Angle Difference

The small angle difference assumed in DC power flow introduces an error on the
obtained power flows. The error on the active power flow due to the assumption
of a small angle difference can be calculated as:

εP = |θ − sin(θ)|
sin(θ) (C.4)

The error on the reactive power flow equals:

εQ = |1− cos(θ)|
cos(θ) (C.5)

The total error on the apparent power equals:

εtot = εP + εQ (C.6)

The total error due to the small angle difference assumption is smaller than 0.5%
if the angle difference in normal operation is smaller than 5◦, as shown in Fig.
C.1. The measured angle difference in the highly meshed, European continental
power system is generally low, even when it is heavily loaded. Voltage angle
differences in the Belgian power system are generally smaller than 7◦ and are
below 2◦ in 94% of the lines [274].
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Figure C.1: Error induced due to the assumption of small angle differences.



Appendix D

Five-Node Test System

This appendix summarizes the data of the five-node test system applied in the
case studies in Chapters 6, 7 and 8. The illustrative five-node test system is
based on the Roy Billinton reliability test system for which grid data, generator
data and reliability data are available in literature [195].

D.1 Network

The network is shown in Fig. D.1. Generation is located in node 1 and 2;
demand is located in node 2 to 5. Table D.1 shows the reactance xline, capacity
and failure probability for the seven transmission lines.

1 2

3 4

5

PST

Figure D.1: Circuit diagram of the five-node test system.
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Table D.1: Line data.

From To xline Capacity Outage Phase-shifting
node node [pu] [MVA] probab. transformer

1 3 0.18 85 0.0017 No
2 4 0.6 71 0.0057 No
1 4 0.48 71 0.0046 No
3 4 0.12 71 0.0011 Yes
3 5 0.12 71 0.0011 No
1 3 0.18 85 0.0017 No
4 5 0.12 71 0.0011 No

D.2 Generation

The generation park consists of conventional power plants with a high marginal
cost and wind power plants with a marginal cost near zero, but uncertain
availability. Table D.2 summarizes generators’ marginal costs and outage
probability data for the case studies. Outage probability data differ between
the case studies in the different chapters.

Table D.2: Generation data.

Node Capacity Type cmarg Outage Outage
[MW] [e/MWh] probab. probab.

Chapter 6 & 7 Chapter 8

1 40 conventional 13.83 6.2E-3 6.2E-7
1 40 conventional 13.83 6.2E-3 6.2E-7
1 10 conventional 13.83 6.2E-3 6.2E-3
1 20 wind 0.04 6.2E-3 6.2E-3
2 40 conventional 13.83 6.2E-3 6.2E-7
2 20 conventional 13.83 6.2E-3 6.2E-3
2 20 wind 0.01 6.2E-3 6.2E-3
2 20 wind 0.03 6.2E-3 6.2E-3
2 20 wind 0.05 6.2E-3 6.2E-3
2 5 conventional 13.83 6.2E-3 6.2E-3
2 5 conventional 13.83 6.2E-3 6.2E-3

Upward and downward redispatch costs depend on the marginal cost of the
generator and differ between the preventive and corrective stage. Wind
generators are not available for positive redispatch.
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D.3 Demand and VOLL

The forecast of total system demand is based on the hourly load profile defined
for the Roy Billinton reliability test system over a whole year [195]. The annual
peak load forecast for the considered system is 165 MW. For simplification a
year is represented by 6 x 3 x 4 = 72 temporal cases. That is, the set T is the
Cartesian product of 6 seasons (early spring, late spring, summer, early autumn,
late autumn and winter), 3 days (weekday, Saturday and Sunday), and 4 times
of day (morning, noon, evening and night). Each temporal case has its own
probability of occurrence determined by the proportion of time instances in a
year represented by a certain temporal case. The definitions of the seasons and
times of day are summarized in Table D.3. Total system demand for each of
the 72 temporal cases is calculated as the mean over all valid hours.

Table D.3: Specifications of the seasons and times of day considered in the
demand modelling.

Season Range dates Winter period Time of day Range hours Peak period

Early spring 22/3 - 21/4 Yes Morning 5h - 10h Yes
Late spring 22/4 - 21/6 No Noon 11h - 16h No
Summer 22/6 - 21/9 No Evening 17h - 22h Yes
Early autumn 22/9 - 21/10 No Night 23h - 4h No
Late autumn 22/10 - 21/12 Yes
Winter 22/12 - 21/3 Yes

Table D.4 gives the reference share of total demand per node that is attributed
to a particular type of consumer DSref (c, b) together with the share of the total
demand at that node DSref (b). Table D.4 shows that most demand is located
in node 3, consisting mostly of residential and commercial demand. Node 4
contains mostly industrial demand, whereas node 5 contains mostly residential
demand.

Table D.4: Demand shares of different nodes in total demand and of different
consumer groups at different nodes.

Node Residential Industry Commercial Public Total demand share
DSref (b)

DSref (c, b)

2 0 0.8 0.2 0 0.125
3 0.4 0 0.4 0.2 0.5
4 0.3 0.5 0.1 0.1 0.25
5 0.8 0.1 0.1 0 0.125

The case studies executed in this work consider probabilistic approaches based
on differentiated VOLL data, i.e., differentiation in time and between nodes or
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consumer groups. The 72 typical time instants introduced above constitute all
temporal cases considered in the VOLL data applied in the case studies. To
unify the considered VOLL data with respect to consumer types, consumers
are split into only two categories: residential and non-residential consumers.
Non-residential consumers correspond to the aggregated share of all consumers
except the residential ones. The share of residential and non-residential demand
in total system demand changes throughout the year. Table D.5 shows the
multiplication factors that take this effect into account. The Demand Share (DS)
of consumer group c at node b in total system demand at time t is calculated as:

DS(c, b, t) = DSref (c, b) · κh(c) · κd(c) · κy(c)∑
c∈C DS

ref (c, b) · κh(c) · κd(c) · κy(c) (D.1)

with c ∈ {residential, non-residential} and t determined by the time of day h,
type of day d and season in the year y.

Table D.5: Time dependent multiplication factors for the demand share of
different consumer groups.

Residential Non-residential

Time κh(c)

2 AM 0.7 1.3
8 AM 1.3 0.7
2 PM 0.8 1.2
6 PM 1.3 0.7

Day κd(c)
Weekday 0.8 1.2
Saturday 1.15 0.85
Sunday 1.3 0.7

Season κy(c)

Winter 1 1
Spring 0.9 1.1
Summer 1.1 0.9
Autumn 1 1
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